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Abstract

This is a very quick introduction to the theory of fiber bundles and characteristic
classes, with an emphasis on Stiefel-Whitney and Chern classes. Some caveats are in order:
given that this is intended to fit in a two- to three-hour lecture, many things have been
sacrificed. There are no proofs, few examples, very possibly missing hypotheses (I invite
you to assume all base spaces are paracompact, or why not just work in the category of
CW -complexes), and some blackboxes along the way. The interested reader should leaf
through the references.

Some conventions:

Space will mean “topological space” and a map between these will mean “continuous map”.

K will denote either of R or C, endowed with their usual topology.

1 Fiber bundles

1.1 General fiber bundles

The main definition is the following:

Definition 1.1.1. A fiber bundle with total space E, base space B, projection p and fiber F
is a quadruple (E,B, p, F ) where p : E → B is a map which is locally trivial, meaning
that for all b ∈ B there exists an open set U ⊂ B with b ∈ U and a homeomorphism
ϕ : p−1(U)→ U ×F (called a local trivialization) such that the following diagram commutes:

p−1(U)
ϕ

∼=
//

p
##

U × F

p1
||

U

(1)

where p1 is the projection onto the first coordinate.
We also write F → E

p→ B to denote (E,B, p, F ). This is not an unreasonable notation
in view of the following remark.
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Remark 1.1.2. The map ϕ restricts to a homeomorphism p−1(b)
∼=→ {b} × F ∼= F . We can

thus call every p−1(b) a fiber of the bundle.

Example 1.1.3. 1. The trivial bundle with base space B and fiber F : take p = p1 : B×F →
B.

2. A fiber bundle with discrete fiber is the same thing as a covering space, if the base is
path-connected.

3. The Möbius strip is the total space of a fiber bundle with base space the circle, and
projection the retraction onto it.

4. Let M be a smooth n-manifold and let TM be the tangent bundle, i.e. the union of all
the tangent spaces:

TM =
⊔
x∈M

TxM = {(x, v) : x ∈M, v ∈ TxM}.

Then TM is a smooth manifold, and it is the total space of a fiber bundle with base
space M , projection p : TM →M, (x, v) 7→ x and fiber Rn ∼= TpM for all x.

We can also consider the cotangent bundle, where instead of TxM one considers the
dual vector space TxM∗, or more generally, the bundle of alternating k-tensors if we
consider Λk(TxM

∗) for a fixed k ≥ 1 (cf. differential forms).

If the manifold is Riemannian (e.g. if it is embedded in an ambient Euclidean space and
we let the tangent spaces inherit the inner product of the ambient vector space), then
we can consider a normal bundle NM where we consider the orthogonal complements
TxM

⊥.

5. Is there a diffeomorphism TS2 → S2 × R2 such that h(TxS
2) = {x} × R2? This is

what it means to ask whether TS2 is trivial. The answer is no, for if we had such a
diffeomorphism, then the vector field X on S2 defined as X(x) = h−1(x, v), for a fixed
v 6= 0, would be a nowhere vanishing vector field on S2, which is not possible by the
classical “hairy ball theorem”.

Exercice 1.1.4. Prove that TS1 is trivial, using the fact that S1 ⊂ C which is a field. You
can also prove that TS3 and TS7 are trivial, by means of Hamilton’s quaternions and of
octonions.

1.2 Fiber bundles with structure group

Suppose we have two local trivializations ϕ, ϕ′ over U ⊂ B: then the map ϕ◦ϕ′−1 : U×F →
U × F has the form

(u, f) 7→ (u, θϕ,ϕ′(u)(f))

for some function θϕ,ϕ′ : U → Homeo(F ) called a transition function. A priori θϕ,ϕ′ needs
merely land in the set of functions F → F , but thanks to remark 1.1.2 it really lands in
Homeo(F ).
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Now, consider for example the case of the tangent bundle TM . The fiber is F = Rn which
is a vector space. We could consider only the transition functions θϕ,ϕ′ : U → GLn(R) ⊂
Homeo(Rn) to get coherence with respect to this additional linear structure. This is the basis
for one possible definition of a vector bundle.

Let us do this in general. Instead of considering Rn and the group GLn(R), we will
consider any space F with the action of a topological group G.

Definition 1.2.1. A topological group is a group G which is also a space, in such a way that
the product G × G → G and the inversion G → G are continuous maps. One sometimes
calls an old-fashioned group a discrete group.

Let X be a space and G be a topological group. An action of G on X is a usual group-
theoretic action G × X → X that is a continuous map. In this case we say that X is a
G-space.

Remark 1.2.2. 1. The condition of continuity in the definition of an action is equivalent
to having the adjoint group homomorphism G→ Bij(X) have its image contained in
the subgroup Homeo(X), where Bij(X) is the group of bijections of X .

2. We can endow Homeo(X) with the compact-open topology. Then, for locally com-
pact Hausdorff spaces, the data of an action of G on X is equivalent to the data of a
continuous group homomorphism G→ Homeo(X).

Example 1.2.3. GLn(R) is a topological group. So is its subgroup O(n) of linear automor-
phisms of Rn preserving the inner product. They act on Rn by evaluation.

We will also want to consider the complex case: GLn(C) is a topological group, and so is
its subgroup U(n) of linear automorphisms of Cn preserving the Hermitian inner product
on C. They act on Cn by evaluation.

Definition 1.2.4. Let G be a topological group acting on a space F . Let (E,B, p, F ) be
a fiber bundle. A G-atlas for the bundle is a collection {(Ui, ϕi)} where {Ui} is an open
covering of B and ϕi : p−1(Ui) → Ui × F is a local trivialization, such that: if Ui ∩ Uj 6= ∅,
then

ϕi ◦ ϕ−1j : (Ui ∩ Uj)× F → (Ui ∩ Uj)× F

is given by
(u, f) 7→ (u, θi,j(u) · f)

where θi,j : Ui ∩ Uj → G is a continuous map, called transition function.
Two G-atlases are equivalent if their union is a G-atlas.
A fiber bundle with structure group G, or a G-bundle, is the data of: a fiber bundle where

the fiber has an action of G, and an equivalence class of a G-atlas. 1

Remark 1.2.5. A fiber bundle (E,B, p, F ) with structure group Homeo(F ) is the same thing
as a fiber bundle (E,B, p, F ).

1Compare with the definition of a smooth structure on a topological manifold, and with that of a smooth
manifold.
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1.3 Vector bundles

Definition 1.3.1. A K-vector bundle of rank n is a fiber bundle with fiber Kn and structure
group GLn(K). An alternative name is n-plane bundle; if n = 1, we talk of line bundles. If
p : E → B is such a bundle, we denote dim(E) := n.

Remark 1.3.2. The data of a K-vector bundle of rank n (E,B, p, F ) is equivalent to the data
of a map of spaces p : E → B satisfying the following:

• for every b ∈ B the subspace p−1(b) ⊂ E is a K-vector space of dimension n,

• the map p : E → B is locally trivial and the local trivializations restrict to linear isomor-
phisms on the fibers. More precisely, for every b ∈ B there is an open neighboorhood
U ⊂ B and a homeomorphism ϕ : p−1(U)→ U ×Kn such that the diagram

p−1(U)
ϕ

∼=
//

p
##

U ×Kn

p1
{{

U

(2)

commutes, and such that the restrictions ϕ : p−1(b′) → {b′} ×Kn
∼=→ Kn are linear

isomorphisms for every b′ ∈ U .

Example 1.3.3. The examples in 1.1.3.4 are all vector bundles.

1.4 Principal bundles

A G-principal bundle is a particularly simple fiber bundle with structure group G, and
actually, any such fiber bundle can be constructed out of a principal one.

Definition 1.4.1. Let G be a topological group. A G-principal bundle is a fiber bundle with
fiber G and structure group G, where G acts on itself by left translations.

Remark 1.4.2. The condition that the structure group be G with the self-action by left
translations is equivalent to the action of G on the fiber F being free and transitive. Indeed,
observe that the action of a group G on a space F is free and transitive if and only if the map
ϕx : G→ X , g 7→ g · x is a G-isomorphism, for every x ∈ X .
Example 1.4.3. Recall that a covering space p : E → B over a path-connected base B is
called regular if the covering transformation group Autp(E) acts transitively on the fibers, or
equivalently, p∗(π1(E)) ⊂ π1(B) is a normal subgroup. In this case, we can identify the deck
transformation group as follows:

G := Autp(E) ∼= π1(B)/p∗(π1(E)).

Given that this action is always free2, we can identify the fiber of p with G, and the action is
by left translations.

2Recall that an action of G on X is free if: if g · x = x for some x, then g is the identity. Equivalently,
stabilizers are trivial.
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In conclusion, a regular covering space over a path-connected base p : E → B is a
π1(B)/p∗(π1(E))-principal bundle. In particular, a universal covering space B̃ → B is a
π1(B)-principal bundle.

The previous example generalizes as follows. We will not make use of this proposition,
but we state it since we think it might shed some light on principal bundles:

Proposition 1.4.4. If p : E → B is a G-principal bundle, then G acts freely on E on the right,
and E/G ∼= B.

One could carefully construct a statement saying that the converse to the previous propo-
sition is true, e.g., a G-principal bundle is the same thing as a fiber bundle of the form
p : E → E/G, the quotient map, where p is a fiber bundle with structure group G and G acts
freely on the right on E. One has to be careful, there is this and other very similar-looking
definitions of principal bundles on the literature.

Remark 1.4.5. Let p : E → B be a G-principal bundle and F be a G-space. Then one can
make a Borel construction E ×G F with a projection E ×G F → B giving a fiber bundle
with fiber F and structure group G: this bundle and the one determined by p have the same
transition maps. Conversely, from any fiber bundle with structure group G one can obtain a
principal G-bundle. (cf. [1, (4.5)]).

We will not need to use the details of these constructions. So we take the previous para-
graph as the necessary mathematical blackbox needed for confidently asserting the following:
when studying fiber bundles with structure group G, we can, for simplicity, restrict to the
study of G-principal bundles, without losing information.

In particular, for vector bundles, we can restrict to the study ofGLn(K)-principal bundles.
But we can further restrict our attention. There is a notion of reduction of the structure group:
sometimes, given a subgroup H ⊂ G, it happens that studying G-principal bundles is the
same as studying H-principal bundles, as any G-principal bundle can be “reduced” to an
H -principal bundle. Once more, we prefer to take this as a blackbox. We will also admit that
GLn(R) can be reduced to O(n) and GLn(C) can be reduced to U(n). Thus,

The study of R-vector bundles (resp. C-vector bundles) of rank n is equivalent to the
study of O(n)- (resp. U(n)-) principal bundles.

Evidence for this is given by the fact that O(n) ⊂ GLn(R), U(n) ⊂ GLn(C) are deformation
retracts (think Gram-Schmidt). See [5, (11.44), (11.45)] for details.

1.4.1 Hopf bundles

Let us introduce a very classical family of examples of principal bundles. Consider the
quotient map from a sphere to real, projective or quaternionic projective space. It is an
exercise to prove that they are the projections of principal bundles as follows:
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S0 // Sn // RP n

S1 // S2n+1 // CP n

S3 // S4n+3 // HP n

Take n = 1. We obtain the following principal bundles:

S0 // S1 // S1 (3)

S1 // S3 η
// S2

S3 // S7 // S4

There is an additional one coming from the octonionic projective line:

S7 // S15 // S8 (4)

All of these bundles are sometimes called “Hopf bundles”, but if one is to talk about the
Hopf bundle then η is the one classically called thusly.

Theorem 1.4.6 (Adams). The bundles from (3) and (4) are the only fiber bundles with base space,
total space and fiber being spheres.

This is a very deep theorem. It is related to the theorem I will now state. Recall exercise
1.1.4: you proved that TS1, TS3 and TS7 were trivial. Of course, TS0 is also trivial. Also
recall that in example 1.1.3.5 we observed that TS2 is not trivial.

Theorem 1.4.7 (Adams). The only tangent bundles to spheres which are trivial are TS0, TS1, TS3

and TS7.

Another related theorem:

Theorem 1.4.8 (Adams). The only real division algebras are R, C, H and O.

This is a remarkable instance where a deep algebraic theorem follows from topological
techniques, instead of the more usual other way around.

While we’re dealing with these bundles, let me know list some fun facts that you can
safely ignore if you’re unacquainted with homotopy theory:

• π3(S
2) is a free abelian group of rank 1, generated by η. This was historically surprising

and first proven by Hopf (in our modern language, it follows from the long exact
sequence of homotopy groups associated to the Hopf fibration). With homology, one
has that the homology groups of rank greater than the dimension of the sphere vanish.
Mathematicians were expecting this to be true also for homotopy groups: it seemed to
them to be the reasonable thing. It was a shock when Hopf proved otherwise.

• π4(S
3) is the free Z/2-module of rank 1 generated by Ση, the suspension of η. The

proof of this requires more involved techniques, such as e.g. the Serre spectral sequence.

• πn+1(S
n) ∼= Z/2 for n ≥ 3, generated by the corresponding iterated suspension of η.

This is a particular case of Freudenthal’s suspension theorem, the starting point for
stable homotopy theory.
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1.5 Classifying spaces

To avoid cluttering, we have not discussed morphisms between bundles yet. We now intro-
duce the concept in the generality we need:

Definition 1.5.1. Let G be a topological group and p′ : E ′ → B, p : E → B be two G-
principal bundles over the same base space B. A morphism from p′ to p is given by a map
f : E ′ → E such that the following diagram commutes:

E ′

p′
  

f
// E

p
��

B

and such that the restrictions f : p−1(b)→ q−1(b) are G-maps for every b ∈ B.

This determines a category of G-principal bundles over B. We might want to study B
by looking at this category. For example, for the particular case of vector bundles, this idea
leads to the development of topological K-theory, on which we will not delve here.

Proposition 1.5.2. Let p : E → B be a G-principal bundle and f : B′ → B be a map. There
exists a G-principal bundle f ∗E → B′, called the pullback of p, and a map f ∗E → E making
the following diagram a pullback diagram of spaces.

f ∗E

��

// E

p

��

B′
f
// B

Now for something important: every G-principal bundle can be obtained as a pullback
from a fixed G-principal bundle.

Theorem 1.5.3. Let G be a topological group. Any G-principal bundle EG→ BG with EG a
contractible space satisfies the following: for any paracompact space X ,3 the map

[X,BG]→ {isomorphism classes of G-principal bundles over X}

that sends [f ] to the isomorphism class of the pullback f ∗(EG), is a bijection. Here

• [X,BG] denotes the set of homotopy classes of maps X → BG,

• the space BG is called a classifying space of G and is unique up to homotopy equivalence,

• the G-principal bundle EG→ BG is called a universal G-principal bundle, and

• a map fp : X → BG whose homotopy class corresponds to the isomorphism class of a
G-principal bundle p over X is called a classifying map of p; it is unique up to homotopy.

3Dear Reader, I trust you will be lenient towards this sudden change of notation conventions: henceforth,
our base spaces will be called X , since the letter B typically denotes classifying spaces.
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There exists such a bundle.

In view of the uniqueness statement, we will talk of “the” classifying space, and “the”
universal bundle.

In other words, the theorem says that if p : E → X is a G-principal bundle, then there
exists a unique-up-to-homotopy map fp : X → BG such that there is a pullback diagram as
follows:

E //

p

��

EG

��

X
fp
// BG

This equates the study of G-principal bundles to the study of [X,BG] for various X , i.e.,
to a problem in homotopy theory. This is the starting point for the theory of characteristic
classes.

A couple of words on a nice heuristic. There is the trivial bundle which is just a product.
Other bundles which are not isomorphic to the trivial one display some “twisting”: for
example, the Möbius strip. In a very hand-wavy sense, all the twisting is already there in the
universal bundle: the twisting of any bundle is encoded in it, and we decode it through the
classifying map. For example, the classifying map is trivial if and only if the bundle is trivial.

Now, some words about BG. There are several ways to construct it. One can prove
that we are in the correct hypotheses to apply the Brown representability theorem whose
conclusion gives what we want. One could alternatively use a bar construction for a model
of BG which is in addition functorial, an often useful fact.

Remark 1.5.4. Let G be a discrete group. Then BG is an Eilenberg-Mac Lane space of type
K(G, 1), i.e., a space with only one non-trivial homotopy group, which is G in degree 1.

The proof is easy but has some homotopy theory prerequisites. It goes like this: as in
example 1.1.3.2, we get that EG→ BG is a covering map. Therefore it is an isomorphism in
homotopy groups starting from 2. Combining this with contractibility of EG and using the
long exact homotopy sequence of the fibration G→ EG→ BG, we get the result.

Example 1.5.5. By the previous remark, we immediately get thatBZ = S1 andBZ/2 = RP∞.
We could construct those directly, though. For the first example: Z acts on the real line
R by translations. This is a free action and R is contractible, which gives EZ = R and
BZ = EZ/Z ∼= S1. For the second example, take the projection S∞ → RP∞.

1.5.1 The universal vector bundles

We are especially interested in the case of vector bundles, so we are led to consider the classi-
fying spaces of the groups O(n), U(n). Let us denote by VectKn (X) the set of isomorphism
classes of K-vector bundles over X of rank n.
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For n = 1 it is easy to give a description of BO(1). Indeed, O(1) = S0 ∼= Z/2, and so the
universal O(1)-principal bundle is S∞ → RP∞ (example 1.5.5) hence

BO(1) = RP∞ and [X,RP∞] ∼= VectR1 (X).

In a similar fashion, one gets that the universal U(1) ∼= S1-principal bundle is the map
S∞ → CP∞ obtained by taking the colimit of the quotient maps S2n+1 → CP n. Hence

BU(1) = CP∞ and [X,CP∞] ∼= VectC1 (X).

We could go on and give explicit models for BO(n), BU(n) for any n. We decline to do
so.

What about the actual line bundles? The bundle S∞ → RP∞ has fiber O(1) = Z/2: it
is a principal O(1)-bundle, which corresponds to a real line bundle (which in particular has
fiber R) which we haven’t described. One can give an explicit model for this: it is the so-called
tautological line bundle over RP∞, obtained as the colimit of the tautological line bundles
over RP `, which we denote γ`1. Their total space is E`

1 := {(`, v) ∈ RP `×R`+1 : v ∈ `}, and
the projections are (`, v) 7→ `.

An analogous story holds for complex line bundles.

2 Characteristic classes

Let G be a topological group. Suppose we have two G-principal bundles over X , let us call
them p, q : E → X , and we want to decide whether they are isomorphic. Theorem 1.5.3
says we have classifying maps fp, fq : X → BG. The bundles p and q are isomorphic if and
only if fp and fq are homotopic. We haven’t progressed much: deciding whether two maps
are homotopic is very difficult!

However, the functors of algebraic topology come to our help. We can consider a coho-
mology theory h∗ and the induced maps

h∗(fp), h
∗(fq) : h∗(BG)→ h∗(X).

If we managed to find one such h∗ such that h∗(fp) 6= h∗(fq), then p and q would be non-
isomorphic, and the problem would be solved.

Given an element x ∈ h∗(BG) we can consider x(p) := h∗(fp)(x) and x(q) := h∗(fq)(x)

in the cohomology of the base space. Such elements will be what we will call characteristic
classes of p and q with respect to h∗, which is omitted from the notation. Finding an h∗ such
that h∗(fp) 6= h∗(fq) is equivalent to finding an element x such that x(p) 6= x(q).

The goal is to say some words on some well-understood families of characteristic classes
on vector bundles, the Stiefel-Whitney classes and the Chern classes. The former live on
singular cohomology with coefficients in Z/2 and apply to real vector bundles, whereas the
latter live on integral singular cohomology and apply to complex vector bundles.
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Definition 2.0.6. Let G be a topological group and p : E → X be a G-principal bundle. Let
h∗ be a cohomology theory on topological spaces. A characteristic class is an element

x(p) := h∗(fp)(x) ∈ h∗(X),

where x ∈ h∗(BG).

Remark 2.0.7. There is a contravariant functor kG from the homotopy category of topological
spaces to the category of sets, assigning to a space X the set of isomorphism classes of G-
principal bundles over X (on arrows, it is defined via the pullback construction). It is
immediate to check that an element x ∈ h∗(BG) defines a natural transformation from kG
to h∗:

hTopop

kG
((

h∗

77�� x Set .

One can ask whether all such natural transformations define characteristic classes. The
answer is affirmative by theorem 1.5.3 which asserts that the functor kG is representable and
the Yoneda lemma: Nat(kG, h∗) = Nat([−, BG], h∗) ∼= h∗(BG).

As we already said, our main interest will be the about G = O(n), corresponding to rank
n real vector bundles, and G = U(n), corresponding to rank n complex vector bundles.

2.1 Stiefel-Whitney and Chern classes

We will not actually build them. We will state existence and uniqueness theorems character-
izing them.

Theorem 2.1.1 (Stiefel-Whitney classes). There exists a unique sequence of functions w0, w1, . . .

which to each real vector bundle E → X associate a characteristic class wi(E) ∈ H i(X;Z/2),
depending only on the isomorphism class of the bundle, such that, for every E,

1. w0(E) = 1,

2. wi(f ∗E) = f ∗(wi(E)) ∈ H i(Y ;Z/2) if f : Y → X ,

3. Cartan’s formula: wn(E1 ⊕ E2) =
∑

i+j=n

wi(E1) ^ wj(E2) for all n and all E1, E2,4

4. wi(E) = 0 if i > dimE,

5. If γ : L→ RP∞ is the universal real line bundle, then w1(γ) ∈ H1(RP∞;Z/2) = Z/2 is
a generator.

The classes w1(E), w2(E), . . . are called the Stiefel-Whitney classes of E.
4I haven’t discussed the direct sum of two vector bundles. It’s easy: fiberwise, it’s the usual direct sum of

vector spaces. Of course, one has to really construct this bundle. Fiberwise constructions yield honest bundles
for smooth functors.
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Remark 2.1.2. In case you forgot, an easy way of computing H1(RP∞;Z/2) = Z/2 is via the
cellular chain complex.

Similarly, we have the Chern classes:

Theorem 2.1.3 (Chern classes). There exists a unique sequence of functions c0, c1, . . . which to
each complex vector bundleE → X associate a characteristic class ci(E) ∈ H2i(X;Z), depending
only on the isomorphism class of the bundle, such that, for every E,

1. c0(E) = 1,

2. ci(f ∗E) = f ∗(ci(E)) ∈ H2i(Y ;Z) if f : Y → X ,

3. Cartan’s formula: cn(E1 ⊕ E2) =
∑

i+j=n

ci(E1) ^ cj(E2) for all n and all E1, E2,

4. ci(E) = 0 if i > 2 dimE,

5. If γ : L→ CP∞ is the universal complex line bundle, then c1(γ) ∈ H2(CP∞;Z) = Z is
a generator.

The classes c1(E), c2(E), . . . are called the Chern classes of E.

Remark 2.1.4. Analogous remark as in 2.1.2 about computing H2(CP∞;Z) = Z.

A lot can be said about these characteristic classes. For lack of time, we will restrict to
some basic facts. Before getting to examples, let me state a nice result:

Theorem 2.1.5. 1. We have an isomorphism

H∗(BO(n);Z/2) = Z/2[w1, . . . , wn]

where wi is the i-th Stiefel-Whitney class of the universal real n-plane bundle and |wi| = i.
Thus any characteristic class of a real n-plane bundle is a polynomial on the Stiefel-Whitney
classes of the universal n-plane bundle.

In particular, for n = 1,
H∗(RP∞;Z/2) = Z/2[w1].

2. We have an isomorphism

H∗(BU(n);Z) = Z[c1, . . . , cn]

where ci is the i-th Chern class of the universal complex n-plane bundle, and |ci| = 2i. Thus
any characteristic class of a complex n-plane bundle is a polynomial on the Chern classes of
the universal n-plane bundle.

In particular, for n = 1,
H∗(CP∞;Z) = Z[c1].
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This was to be expected, in a way: if every vector bundle can be obtained from a universal
one, then it’s reasonable that every characteristic class for them is obtained from the Stiefel-
Whitney and Chern classes, in view of their axiom 5.

Suppose we computed all the Stiefel-Whitney classes of a real vector bundle p : E → X

of rank n, and they all vanish. By the previous theorem, all the characteristic classes in mod
2 singular cohomology are zero, which is the same as saying that the induced map

f ∗p : H∗(BO(n);Z/2)→ H∗(X;Z/2)

is zero.
Is this enough to guarantee that fp is homotopic to a constant map, i.e., that p is isomor-

phic to a trivial vector bundle? No, it is not. We will see an example where Stiefel-Whitney
classes are not sufficient in a second (but see 2.1.8.3 if you are impatient). First, another
positive result: they are sufficient for line bundles!

Theorem 2.1.6. w1 : VectR1 (X) → H1(X;Z/2) and c1 : VectC1 (X) → H2(X;Z) are isomor-
phisms of abelian groups. Here VectK1 is an abelian group under the tensor product.5 In particular,
this says that

w1(L1 ⊗ L2) = w1(L1) + w1(L2)

for real line bundles L1, L2, and similarly with Chern classes.

This theorem says several things. There’s the formulas, which prove useful and important
(e.g. in defining the Chern character). And as we said, there’s the fact that two line bundles
are isomorphic if and only if they have the same Stiefel-Whitney or Chern classes. But
remember, this is a particularity of line bundles.

Let us finally have some computations. First, a little convention:

Definition 2.1.7. Define w(E) = 1 + w1(E) + w2(E) + · · · ∈ H∗(X;Z/2), the total Stiefel-
Whitney class. Also define the total Chern class by an analogous formula.

These simplify the Cartan formula: w(E1 ⊕E2) = w(E1) ^ w(E2), and analogously for
the Chern classes.

Example 2.1.8. 1. A trivial bundle has total Stiefel-Whitney or Chern class equal to 1.
Indeed: first, observe that the trivial bundle over the point, ∗×Rn → ∗ haswi(∗×Rn) ∈
H i(∗) = 0 if i > 0, hencew(∗×Rn) = 1. Now observe that every trivial bundleX×Rn

is a pullback of the trivial bundle over the point. Hence by axiom 2, we get the result.

2. Stiefel-Whitney and Chern classes are stable, in the sense that they remain the same
after direct summing a trivial bundle. Indeed, this is a consequence of Cartan’s formula
and of the previous example.

5Once more, I haven’t defined the tensor product of vector bundles, but you can guess: it’s obtained
fiberwise.
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3. First observe that NSn, the normal bundle of Sn ⊂ Rn+1, is trivial. Indeed, consider
Sn × R→ NSn, (x, t) 7→ tx.

Now, let TSn be the tangent bundle to the sphere Sn. Consider TSn ⊕NSn. On one
hand, it is TSn, as NSn is trivial. On the other hand, it is also trivial: indeed, just sum
both orthogonal vectors to get an isomorphism with the trivial bundle of rank n+ 1.
So by the first example, w(TSn) = 1.

So all Stiefel-Whitney classes of TSn vanish. Does this mean that TSn is a trivial
bundle? No. Recall Adams’ theorem 1.4.7: TSn is trivial only for n = 0, 1, 3, 7.

4. If Ln is the tautological line bundle over RP n, then w(Ln) = 1+u ∈ H∗(RP n;Z/2) =

Z/2[u]/(un+1). Indeed, this bundle can be obtained via pullback of the universal line
bundle γ with respect to the inclusion map j : RP n → RP∞. But the map

j∗ : H1(RP∞;Z/2) = Z/2→ Z/2 = H1(RP n;Z/2)

is an isomorphism, hence w1(Ln) = j∗w1(γ) is a generator of the right hand side.

And thus this quick introduction comes to an end. I would have liked to have said a word
on the splitting principle. This is a theorem that many times allows us to reduce questions
on general vector bundles to line bundles. One can deduce from this that, in a sense, one
need only define the first Chern class of the universal line bundle, and then all Chern classes
of all complex vector bundles are determined. This is a nice observation, and one that allows
us to define a meaningful “theory of Chern classes” in more general contexts (cf. complex
oriented cohomology theories).

References

[1] James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Math-
ematics, vol. 35, American Mathematical Society, Providence, RI, 2001. MR 1841974
(2002f:55001)

[2] Allen Hatcher, Vector bundles and K-theory, in http://www.math.cornell.edu/
~hatcher (2003).

[3] Dale Husemoller, Fibre bundles, third ed., Graduate Texts in Mathematics, vol. 20,
Springer-Verlag, New York, 1994. MR 1249482 (94k:55001)

[4] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press,
Princeton, N. J.; University of Tokyo Press, Tokyo, 1974, Annals of Mathematics Studies,
No. 76. MR 0440554 (55 #13428)

[5] Robert M. Switzer, Algebraic topology—homotopy and homology, Springer-Verlag, New
York-Heidelberg, 1975, Die Grundlehren der mathematischen Wissenschaften, Band 212.
MR 0385836 (52 #6695)

13

http://www.math.cornell.edu/~hatcher
http://www.math.cornell.edu/~hatcher

	Fiber bundles
	General fiber bundles
	Fiber bundles with structure group
	Vector bundles
	Principal bundles
	Hopf bundles

	Classifying spaces
	The universal vector bundles


	Characteristic classes
	Stiefel-Whitney and Chern classes

	Bibliography

