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These are informal notes aimed to introduce math people not into algebraic topology to a couple of
our basic objects of study. I have made prominent use of footnotes, where I have stacked digressions,
technicalities and comments for people who already have a background in the subject.

• The aim of algebraic topology is to study topological spaces via algebra.

A coherent way to attach invariants to an object is a functor. Indeed, they have the essential
property that any functor F preserves isomorphisms. So if F (X) and F (Y ) are not isomorphic,
X and Y cannot be isomorphic.

1 Into homotopy theory

• Our starting example is the path connected components of a space as a functor
π0 : Spaces → Sets. But of course this is not a complete invariant, meaning that two spaces
with same π0 might not be homeomorphic (e.g. R and S1: one is compact, the other isn’t). 1

So we look for other, better invariants.

We have: π0(X) = X/ ∼ where x ∼ y if there exists a (continuous)2 path from x to y. A path
in X can be seen as a homotopy between two maps from a one-pointed space to X . We want to
generalize this, taking maps from objects higher-dimensional than a point. To do this correctly,
we need to introduce basepoints.

• Let (X, x0) be a pointed space.

Consider S0 = {−1, 1} the unit sphere in R. Denote by Map∗(S
0, X) the set of pointed maps

(S0,−1)→ (X, x0). Then Map∗(S
0, X) is in bijection with X .

We define∼ in Map∗(S
0, X) as: f ∼ g if there is a path from f(1) to g(1). This gives a bijection

between π0(X) and Map∗(S
0, X)/ ∼.

But now we remark that ∼ in Map∗(S
0, X) is exactly the based homotopy relation: f ∼ g

if there exists a map H : S0 × [0, 1] → X such that H(−, 0) = f and H(−, 1) = g (H is a
homotopy) and H(−1,−) = x0 (H is based: the basepoint doesn’t move).

Thus π0(X) = [S0, X]. Here if S and X are based spaces, [S,X] denotes Map∗(S,X) modulo
the based homotopy relation.

1Technically speaking, the functor π0 does not reflect isomorphisms.
2From now on every map between spaces will be assumed to be continuous.
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• We are thus led to define functors πn : Spaces∗ → Sets as:

πn(X, x0) = [Sn, X]

where Sn has had a point fixed as basepoint.3 If we have a based map f : X → Y , this induces a
map πn(f) : πn(X)→ πn(Y ) as πn(f)([γ]) = [f ◦ γ].

For example, π1(X) is the set of based homotopy classes of loops in X based in x0.

• We can now distinguish some spaces that we couldn’t with just π0. For example, take R2 and
R2 \ {(0, 0)}, both with some chosen basepoint, say (1, 0). They are both path-connected so
their π0 is a point. But their π1 is different: π1(R2) has only one element (consider linear
homotopies) but π1(R2 \ {(0, 0)}) has non-trivial loops that go around the origin. 4

• Now, it happens that the πn(X) for n ≥ 1 are more than sets: they’re groups, and as such they
are usually called the homotopy groups of X ; the induced maps are group homomorphisms. For
π1, the operation amounts to concatenation of loops. The structure comes from the “pinch”
map that spheres have, Sn → Sn ∨ Sn, if n ≥ 1. It happens that for n ≥ 2, πn(X) is always
abelian.

So π0 : Spaces∗ → Sets, π1 : Spaces∗ → Groups,5 and πn : Spaces∗ → Abelian Groups, for
n ≥ 2.

• There is an important remark to be made. The πn being functors, they will not distinguish
between homeomorphic spaces. It seems acceptable that we want to classify spaces up to home-
omorphism. But actually, there is another equivalence relation, coarser than homeomorphism,
such that two equivalent spaces are being identified by our πn.

We say that X and Y are homotopy equivalent if there are maps f : X → Y , g : Y → X such
that gf and fg are both homotopic to the identity. 6 Such spaces have identical πn’s.

More generally, if f, g : X → Y are homotopic, then πn(f) = πn(g) for all n. This is simply
the fact that if α : Sn → X and f ' g, then f ◦ α ' g ◦ α.

• A moment of manifold reflection can lead us to think this is too coarse a tool. A fundamental
invariant of a smooth manifold is its dimension, and this invariant is not being preserved by the
πn’s. For example, Rm and the point both have all their πn’s trivial (Rn and the point are not
homeomorphic but are homotopy equivalent).

The “answer” is that, yes, the homotopy groups are not that great geometric invariants, but
they’re still ok for some purposes. In fact, they are perfect invariants of the homotopy type of a
space, which justifies the name “homotopy group”:

Theorem (Whitehead, 1949). If a map f : X → Y between CW complexes induces an isomor-
phism in all of the πn’s, then f is a homotopy equivalence.

3I will be sloppy and denote πn(X,x0) by πn(X).
4This example fuels the slogan that “homotopy groups can detect holes”. This is in a certain sense true, but subtle.
5They can be non-abelian. Ask me about SO(3), or see page 184 of Stillwell’s “Naive Lie Theory”.
6This can be hard to visualize geometrically. A nice fact is that two spaces are homotopy equivalent if and only if they are

both deformation retractions of a single space (a mapping cylinder). See Lee, Introduction to Topological Manifolds,
proposition 7.46.



Here a CW complex is a special kind of topological space which is especially nice and easy to
handle (e.g. it is normal (hence Hausdorff) and first countable), but also sufficiently broad. Any
smooth manifold is homotopy equivalent to a CW complex, for instance.

From now on, we accept that what we are interested in is spaces up to homotopy equivalence
instead of homeomorphism.7 An equivalence class of spaces under homotopy equivalence is
called a homotopy type.8

• Are we finished? Given Whitehead’s theorem, we may think that we are done since we found
perfectly powerful invariants. But with great power comes great incalculability.

2 Into (ordinary) homology

• We must look for some new invariants, more amenable to computation.

In geometric topology, it has been known for a long time that a very useful tool to study a
manifold is a triangulation.9 This means, essentially, a decomposition of your manifold into
triangles (or shapes homeomorphic to these).

Of course, up to homeomorphism, a filled triangle is the same thing as a disk, but the added
advantage is the important combinatorial structure behind triangles: we have edges, faces,
vertices...

Let us denote by ∆n the standard n-simplex, i.e. the convex hull of the canonical vectors
{e0, . . . , en} ⊂ Rn+1.

Now, given a space X , what we will do is look at all (continuous) maps ∆n → X . This gives a
set denoted Singn(X) (for singular) for every n ≥ 0.10

We now wish to exploit the structure of triangles. We have n+1 face maps ∆n−1 → ∆n satisfying
some relations.

By precomposition with these maps we obtain n+ 1 face maps di : Singn(X)→ Singn−1(X).

• What can we do with this Sing gadget? Take again the example of R2 versus U = R2 \ {(0, 0)}:
we wish to detect the “hole”. Then one intuitive way in which triangles will be of help is the
following: we can put three ∆1’s closing in around the origin. These three line segments bound
a full ∆2 in R2, but this is not the case in U .

7If you insist with manifolds, I should say that there is quite a bit of geometric topology constructions that end up in
spaces-up-to-homotopy-type, e.g. in surgery theory, or in cobordism.

8A mild digression: a (metrizable) topological space can be defined as an equivalence class of metric spaces, under the
relation “mutual metric ball containment”. Then one realizes that there is an intrinsic definition of a topological
space, as a set plus some structure. Given that homotopy types are given to us as equivalence classes of topological
spaces, one should ask whether a homotopy type could be described as a set plus some structure to be determined.
The answer is no, one cannot: this is a theorem of Freyd from 1970. Formally, the homotopy category of spaces is not
concretizable. So homotopy types are somehow “weird”, from a traditional set-theoretic perspective.

9Cf. the Euler characteristic, for example.
10You might object: why just consider it as a set? Surely we can endow it with some topology, if X is reasonable (e.g.

the compact-open topology), thus obtaining a simplicial space rather than a simplicial set. But at the end of the day
you get the same information: the geometric realization of both these gadgets is homotopy equivalent to X . See
MathOverflow/11025.



To be able to do this formally, we go to linear algebra11 for aid.12

• The gadget Sing•(X) is not easy to manipulate, or rather, it is abstractly just as hard to manipu-
late as the space X itself.13 But the added advantage is that it is very straightforwardly amenable
to one of the most fruitful simplification processes in all of mathematics: linearization.

• We consider the gadget ZSing•(X), i.e. ZSingn(X) is the free abelian group with basis the set of
all maps ∆n → X . This just means that we allow ourselves to make formal sums and differences
of such maps.

The n face maps di : ZSingn(X) → ZSingn−1(X) can be assembled, thanks to the device
of taking “formal sums and differences”, into a single map d : ZSingn(X) → ZSingn−1(X),

d =
n∑
i=0

(−1)idi called the boundary map, which satisfies an essential property:

d2 = 0.

We get what is called a chain complex: a sequence of morphisms of abelian groups such that the
composite of an arrow with the next one is zero.

· · · // ZSingn+1(X) d // ZSingn(X) d // ZSingn−1(X) // · · ·

This means that Im
(
ZSingn+1(X)

d−→ ZSingn(X)
)
⊂ ker

(
ZSingn(X)

d−→ ZSingn−1(X)
)
.

The difference between these two subgroups is the n-th homology group of X :

Hn(X) =
ker
(
ZSingn(X)

d−→ ZSingn−1(X)
)

Im
(
ZSingn+1(X)

d−→ ZSingn(X)
)

The elements of the numerator are called cycles, and those of the denominator are called bound-
aries.

• This definition is not as straightforward as that of homotopy, but with the algebra come extra
tools for computation.14 It is also a homotopy invariant: homotopy-equivalent spaces have
isomorphic homologies.

• In our example of U = R2 \ {(0, 0)}, the empty triangle around the origin is a cycle (for n = 1),
but is not a boundary, hence defines a non-trivial element of H1(U). By contrast, H1(R2) = 0,
hence U and R2 can’t be homotopy equivalent. 15

11I should say abelian group theory and homological algebra, in all honesty.
12We could also go to vector calculus, as is perhaps familiar. Indeed, U admits a vector field F (x, y) = ( −y

x2+y2 ,
x

x2+y2 ),
whose line integral along the unit circle with the standard parametrization gives 2π. This can be used to prove that U
is not diffeomorphic to R2: indeed, F is irrotational, but not a gradient. (This is secretly de Rham cohomology).

13What I’m thinking of here is that Sing•(X) is a simplicial set, and that for homotopy theory purposes, spaces and
simplicial sets are equivalent through the Sing construction.

14For example, the long exact sequence and the Mayer-Vietoris sequence.
15Therefore the homology groups can also be said to detect “holes”, albeit differently. For example, the “hole” in the

torus is detected in homotopy by the π1, but in homology by the H2. Perhaps what is even more subtle than a “hole”
is its “dimension” (neither of which have standard definitions). In any case, one could argue that a sensible definition
of a “hole” is precisely a cycle which is not a boundary.



• Homology is a functor: for each n ≥ 0 there is a functorHn : Spaces→ Abelian Groups. How
much do these functors detect?

A space X is simply connected if it is path-connected and π1(X, x) = 0 for all x ∈ X .

Theorem (Whitehead). Let X and Y be simply connected CW complexes. If a map f : X → Y

induces an isomorphism in all of theHn’s, then f is a homotopy equivalence.

So, it detects the homotopy type for simply connected spaces. Homology is less powerful, but
more computable.

• It turns out that there is also a version of homology for pointed spaces. This modification only
affects the H0, and is denoted H̃∗.

3 Homology through homotopy

• Since homology is less powerful than homotopy and homotopy is all-powerful, we might
suspect that homology is a particular case of homotopy. What I mean is, from a based space X
with basepoint ∗, can we find a new space X̂ such that π∗(X̂) ∼= H̃∗(X)? 16

• The answer is yes (if X is a CW complex). This was done by Dold and Thom.

The abstract idea is the following. In homology, what we do is “linearize” each of the sets
Singn(X). What we are now going to do is just make this “linearization” directly on the space,
without passing through Sing. Hence our desired X̂ will be the following Ztop[X].

The abstract definition of Ztop[X] is: it is the free topological abelian group on X .17 Explicitely,
it is the quotient of {∑

i

aixi : ai ∈ Z, xi ∈ X

}
(1)

by the relations: 0x = ∗ for all x ∈ X , a∗ = ∗ for all a ∈ Z, and nx + mx = (n + m)x for all
n,m ∈ Z, x ∈ X . Observe that this can alternately be described as{∑

i

aixi : ai ∈ Z \ {0}, xi ∈ X \ {∗}, xi 6= xj if i 6= j

}
∪ {∗}. (2)

This can be imagined as: to each point x ∈ X we can attach a weight a ∈ Z. Now we consider
all formal sums of points with weights, subject to the relations that adding the same point with
two different weights amounts to considering the same point with the sum of the two weights,
and the relations saying that the basepoint in X with any weight will serve as identity element.

We have an abelian group structure, what about the topology? It is the quotient topology with
respect to the surjection

∞⊔
n=0

Zn ×Xn → Ztop[X], (a1, . . . , an, x1, . . . , xn) 7→
n∑
i=1

aixi

16Being picky, what we really want is a natural isomorphism of functors π∗ ◦ −̂ ∼= H̃∗.
17To be interpreted as the free topological abelian group on a pointed space, where this means that we are asking that the

basepoint serves as identity element. Also note that in Dold-Thom’s original article this was denoted AG(X).



where in the left hand side Z has the discrete topology.18 Therefore Ztop[X] is a based space.
The topology and the group structure are compatible.

• The theorem is that, for any CW complex X ,

H̃∗(X) ∼= π∗(Ztop[X]).19

This explains the motto “homology is abelianized homotopy”. The isomorphism is the follow-
ing:

Suppose z =
∑
aiσi ∈ ZSingn(X). Then using the sum in Ztop[X], we can form a single map

∆n → Ztop[X], t 7→
∑
aiσi(t).

Now, if z is a cycle, then this maps descends to the quotient: ∆n/∂∆n → Ztop[X]. But
∆n/∂∆n ∼= Sn, and we get a map Sn → Ztop[X], whose homotopy class gives us the desired
element in πn(Ztop[X]). 20

• As an example, the previous theorem tells us that Ztop[Sn] is a model for an Eilenberg-Mac Lane
space K(Z, n), i.e. the homotopy of Ztop[Sn] is concentrated in degree n.21 This is because
the homology of Sn is concentrated in degree n and of value Z (this fact would require a
computation).

• Now, in some textbooks (such as Hatcher) you might see the Dold-Thom theorem in terms
of a construction called the infinite symmetric product, SP , also present in Dold and Thom’s
original 1958 paper. Let us describe it, for completeness.

First, consider the object Ntop[X], defined as the quotient by the same relations of the set (1)
where we have replaced the abelian group Z by the abelian monoid N. It can also be described
in a similar fashion to (2). Thus, it is the free abelian topological monoid on the based space X .

This Ntop[X] admits another description, which is the one that appears e.g. in Hatcher’s
textbook. Define SP n(X) to be the n-fold cartesian product Xn modulo the action of the sym-
metric group Sn on the factors, i.e. Sn acts on Xn as σ · (x1, . . . , xn) = (xσ(1), . . . , xσ(n)).
Define SP (X) to be the colimit, i.e. the union

⋃
n≥0 SP

n(X) under the inclusion maps
SP n(X) → SP n+1(X) introducing the basepoint at the last coordinate. This is an alterna-
tive way of describing Ntop[X] which does not work for the Z-case (we don’t have negative
cartesian powers!).

• There is an obvious inclusion Ntop[X] → Ztop[X]. This induces isomorphisms in homotopy
groups for X a connected CW complex. This is Satz 6.10.III in Dold-Thom’s paper.22 In partic-
ular, π∗(SP (X)) ∼= H̃∗(X). So SP also allows for interpreting homology through homotopy.

18Equivalently, the topology on Ztop[X] is the final topology with respect to the analogous maps Zn ×Xn → Ztop[X],
for all n ≥ 0, i.e. the finest topology on Ztop[X] that makes these maps continuous.

19This can be taken as a definition of homology, and then the fact that we can express it via chain complexes, a “happy
accident”. This homotopical approach to homology is taken for example in the textbook of Aguilar, Gitler and Prieto.

20There is another nice proof, which is as follows. Show that π∗(Ztop[−]) defines a reduced ordinary homology theory
on based CW complexes, thus by uniqueness it coincides with H̃∗. This contains more information than the lone
isomorphism above: it says the isomorphism is natural, as in the previous footnote, but it also says that the isomor-
phism commutes with the suspension isomorphisms. This is nice, because it implies that the long exact sequences
they define are the same. Let me point out how they arise for π∗(Ztop[−]): if A ⊂ X , then there is a fibration
Z[A] → Z[X] → Z[X/A] (actually, a principal bundle) and the homology long exact sequence of A ⊂ X is the
homotopy long exact sequence of this fibration.

21More generally, if X is a Moore space of type (G,n), then Ztop[X] is an Eilenberg-Mac Lane space K(G,n).
22For this to be true for large CW complexes, we need to work with a convenient category of spaces, e.g. compactly

generated weakly Hausdorff.



• One can wonder whether these constructions could be extended to an arbitrary abelian monoid
G, not only N or Z, and even perhaps a topological one. This was done by McCord in 1969.23

4 Cohomology

• You may also have heard of the term “cohomology”. (Ordinary) cohomology is a variant of
homology obtained by dualization. Depending on the context, one may be more suitable than
the other one. One main advantage of cohomology is that it is a better invariant, in the sense
that it has more structure. It’s not only a sequence of abelian groups, but actually a graded
ring: there is a product. The existence of this product can help distinguish further spaces (i.e.
there are spaces with isomorphic homology and cohomology groups, but different product in
cohomology). 24

5 (Extraordinary) (co)homology theories

• I don’t have the time to discuss these. However, I want to stress that the homology we have
discussed above is one very particular kind of “homology”. One can axiomatize what one
would desire of a (co)homology theory, by turning certain properties of ordinary (co)homology
theory (as functors from spaces to abelian groups) into a definition, and then it turns out that
there is a whole zoo of (co)homology theories fundamentally different from the ordinary one.
Three big important ones are topological K-theory, cobordism, and stable homotopy. They
have been fundamental in the resolution of several classical topological problems that predate
algebraic topology.25

One could alternatively take the Dold-Thom theorem as starting point and think that we will
get different homology theories by turning certain properties of SP into a definition. Then
taking homotopy groups would give us a new “generalized homology theory”. This is a valid
approach.26

An important point is that these (co)homology theories do not come from a chain complex.27

• Another more classical way in which a homology theory can be obtained through homotopy is
through the theory of spectra, but that’s a story better left for another day.28

23We get the nice result that for G an abelian topological monoid, Gtop[S1] is a model for BG, the classifying space of G.
24One might wonder about this asymmetry. An observation for the initiated is that whereas the cohomology of a space

is an algebra, the homology is a coalgebra... if one works with field coefficients. (The problem for integral coefficients
is that the splitting in the Künneth short exact sequence is not natural!)

25E.g. the only spheres that have a trivial tangent bundle are S0, S1, S3 and S7, first proven by Adams using K-theory.
26The hypotheses on the functors are: “pointed, 1-excisive homotopy functors”, the most non-trivial thing perhaps being

that cofibration sequences get sent to fibration sequences. See e.g. section 1 of Goodwillie’s Calculus I paper. Also, see
MathOverflow/182823 for a construction due to Segal of connective K-homology in this spirit.

27In fact, the only one coming from a chain complex is the singular one (and sensible amalgamations of these, amounting
to wedges of Eilenberg-Mac Lane spectra). This is a theorem of Burdick, Conner and Floyd.

28For the initiated: for a spectrum E, we have its associated homology theory E∗(X) = π∗(Ω
∞(E∧X)). We see the link

to the Dold-Thom approach. The space Ω∞(E ∧X) is not very explicit, since it involves the Ω-spectrum replacement
of E ∧ X . However, the paper Partial monoids and Dold-Thom functors by Mostovoy generalizes the Dold-Thom
construction from the Eilenberg-Mac Lane spectrum giving ordinary homology, to general spectra.
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