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Abstract

The purpose of this note is to sketch a construction of the K-theory Ω-spectrum of a ring.
Virtually all the results of all but the last paragraph are stated with this construction in view.
We assume the reader has some familiarity with homotopy theory but we don’t assume any
familiarity with K-theory.

Throughout this note, R will denote a ring (associative and unital). All CW -complexes are
taken to be pointed; a space means a (pointed) CW -complex, and a map of spaces means a continuous
based map between spaces.

§1 Introduction During the 1950s and the 1960s, three abelian groups were constructed from a
ring R:

• K0(R), the group completion of the commutative monoid Proj(R) of finitely generated
projective R-modules under direct sum.

• K1(R), the abelianization of the group GL(R), i.e. the quotient GL(R)/[GL(R), GL(R)].
Here GL(R) is the group arising as the direct limit of the inclusions GLn(R) ↪→ GLn+1(R),
A 7→

(
A 0
0 1

)
, and [GL(R), GL(R)] denotes the commutator subgroup of GL(R). It can

be proven (“Whitehead’s lemma”) that [GL(R), GL(R)] = E(R) and thus K1(R) =

GL(R)/E(R). Here E(R) denotes the group arising as the direct limit (under inclusions as
above) of the groups En(R) generated by the elementary matrices. An elementary matrix
A ∈ En(R) is an n × n matrix that has 1 in every diagonal spot, an element r ∈ R in one
non-diagonal entry (i, j), and is zero elsewhere. We will denote such a matrix by erij .

• K2(R) has a more complicated definition.

They were thus numbered for several reasons. For example, we have

K1(R) ∼= H1(GL(R);Z) and K2(R) ∼= H2(E(R);Z),

where Hi(−;Z) denotes integral group homology.
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Another reason is the following. There are also “relative K-groups” of a pair (R, I) where I is
an ideal of R; these are denoted Ki(R, I) for i = 1, 2. These groups fit into a long exact sequence:1

K2(R, I)→ K2(R)→ K2(R/I)→ K1(R, I)→ K1(R)→ K1(R/I)→ K0(I)→ K0(R)→ K0(R/I).

Quillen was the one to give, in 1973, the “right” generalization of the Ki-groups to higher i.
His strategy was to attach a space KR to the ring R, in a way that its homotopy groups would be
the K-groups of R. The exact sequence above continues to the left, and arises as the long exact
homotopy sequence of a fibration.

The space KR was proven to be an infinite loop space2, thus fitting into the 0-th stage of an
Ω-spectrum. In this note we will outline one of several ways to construct this object.

§2 Perfect and quasi-perfect groups

Definition. Let G be a group. We say it is perfect if it equals its commutator, i.e. G = [G,G].
Equivalentely, its abelianization Gab is trivial.

We say it is quasi-perfect if its commutator is perfect.

Of course, every perfect group is quasi-perfect.

Proposition ( [6, (2.1.4)]). GL(R) is quasi-perfect, i.e. E(R) is perfect.

§3 The “+”-construction There is a universal way to modify a connected space so as to kill a
chosen perfect normal subgroup of its fundamental group, without altering its homology. This is
the “+”-construction which we state in the following

Theorem ( [1, (3.1, 3.2)]). Let X be a connected CW -complex and P a perfect normal subgroup of
π1(X).

There exists a connected CW -complex X+
P , obtained from X by attaching 2-cells and 3-cells, such

that the inclusion i : X ↪→ X+
P satisfies the following properties:

1. π1(X+
P ) = π1(X)/P and the induced homomorphism i∗ : π1(X) → π1(X+

P ) is the quotient
map π1(X)→ π1(X)/P ,

2. i induces an isomorphism i∗ : H∗(X;L) → H∗(X
+
P ;L) for any local coefficient system L on

X+
P ,

3. the pair (X+
P , i) satisfies the following universal property: if Y is a connected CW -complex and

f : X → Y is a map such that f∗ : π1(X) → π1(Y ) satisfies f∗(P ) = 0, then there exists a
unique map f+ : X+

P → Y up to homotopy making the following diagram homotopy commute.

X
f
//

i
��

Y

X+
P

f+

>>

The “+”-construction is thus functorial up to homotopy.
1The group K0(I) can be conceived as the K-group of a ring without unit [2, (§2.1)], or through the notion of the

“augmented ring” R⊕ I [10, (II.2.3), p. 242].
2With our definitions it will be, more precisely, the space K0(R)×KR where K0(R) is given the discrete topology.
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§4 The classifying space of a group

Theorem ( [2, (6.1)]). Let G be a group. There exists a (connected) CW -complex BG such that
π1(BG) = G and πi(BG) = 0 for i 6= 1. Such a space is called a classifying space for G or a K(G, 1)

space, and is unique up to homotopy equivalence.
There exists a functorial construction for BG: we get a functor B from the category of groups to the

category of CW -complexes.

If G is a quasi-perfect group with commutator N , we may apply the “+”-construction to the
space BG with respect to the perfect normal subgroup N ⊂ G = π1(BG). In this case, we will
denote BG+

N by BG+.

Proposition ( [2, (6.2.1.ii)]). If G is a quasi-perfect group and N is its commutator, then the map
BN+ → BG+ induced by the inclusion N ↪→ G is a universal covering map.

§5 The K-space of R Since GL(R) is quasi-perfect with commutator E(R), we can form the
space BGL(R)+ = BGL(R)+

E(R). This space satisfies π1(BGL(R)+) = GL(R)/E(R) = K1(R).
It can be proven that π2(BGL(R)+) = K2(R) ( [10, (IV.1.7.1)]). This leads us to make the
following

Definition. Let R be a ring. We define the K-space of R as the topological space

K(R) := BGL(R)+.

We define the Ki-groups of R for i ≥ 1 to be the homotopy groups of K(R):

Ki(R) := πiK(R) for i ≥ 1.

We observed above that this definition coincides with the classical one for i = 1, 2.

The assignment R 7→ K(R) can be taken to be (strictly) functorial, see [2, (6.3)] for details. It
can also be extended functorially to non-unital rings, see [2, p. 28].

We might have definedK(R) asK0(R)×BGL(R)+ =
⊔

K0(R)

BGL(R)+, whereK0(R) is given

the discrete topology. The homotopy groups of this space coincide with the ones for BGL(R)+

for i ≥ 1, and we get the advantage that if we apply π0 we recover the set K0(R) since BGL(R)+

is connected.
However, this is not right in the categorical sense: “the problem is that one cannot write K(R)

functorially as a product of K0(R) and BGL(R)+”, remarks Schlichting in [7, (2.2.9)].

§6 Cone and suspension

Definition. The cone of R is the ring CR of row-and-column-finite matrices over R, i.e. the ring
of infinite matrices that have finite non-zero elements in every row and column.

Denote by MR the set of infinite matrices over R with finite non-zero coefficients, i.e. the
colimit of the inclusions Mn(R) ↪→Mn+1(R), A 7→

(
A 0
0 0

)
.

The set MR ⊂ CR is an ideal; the quotient ring ΣR := CR/MR is called the suspension of R.
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Proposition. • ( [9, (2.5) and below], [4, (1.4.7)]) The space K(CR) is contractible and CR
satisfies Ki(CR) = 0 for all i ≥ 0.

• ( [2, p. 8 and (6.2.6.iii)]) There is a homotopy equivalence K(MR) ' K(R) and MR satisfies
Ki(MR) = Ki(R) for all i ≥ 0.

The previous proposition and the long exact sequence in §1 yield the following

Proposition. K1(ΣR) ∼= K0(R).

§7 The K-theory Ω-spectrum If X is a space, denote by Ω0X ⊂ ΩX the connected component
of the trivial loop.

Lemma. Let X be a space and let p : X̃ → X be a universal cover. There is a homotopy equivalence
ΩX̃ → Ω0X .

Proof. Consider the map Ωp : ΩX̃ → ΩX . The space ΩX̃ is connected, since π0(ΩX̃) ∼= π1(X̃) =

0. Therefore the image of Ωp lies in Ω0X : we have a map

Ωp : ΩX̃ → Ω0X. (1)

Let us check this map is a weak equivalence. Firstly, both its domain and codomain are con-
nected. Secondly, since the homotopy groups for i ≥ 1 only depend on the connected component
of the base point, we have the equality in the following commutative diagram.

πiΩX̃
(Ωp)∗ //

∼=
��

πiΩ0X = πiΩX

∼=
��

πi+1X̃ p∗
// πi+1X

The map p∗ : πi+1X̃ → πi+1X is an isomorphism since i + 1 ≥ 2. Therefore the map
(Ωp)∗ : πiΩX̃ → πiΩ0X is one too.

Since loop spaces of CW -complexes have the homotopy type of a CW -complex, the map (1)
is a homotopy equivalence by Whitehead’s theorem.

Proposition ( [9, (3.1)]). Let 1 → G1 → G2 → G3 → 1 be an exact sequence of groups. Suppose
(i) G1 and G2 are quasi-perfect and G3 is perfect, (ii) for every g ∈ G1, h1, . . . , hn ∈ G2 there exists
h ∈ G2 such that ghjg−1 = hhjh

−1. Then there is a homotopy fibration sequence

BG+
1

// BG+
2

// BG+
3 .

Theorem. We have a homotopy equivalence

K(R)
' // Ω0K(ΣR) . (2)
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Proof. Consider the following short exact sequence in Rng.

0 //MR
i // CR

p
// ΣR // 0

The functor GL : Ring → Grp extends to a left exact functor Rng → Grp [2, (2.1.10)]. We
thus have an exact sequence in Grp:

1 // GL(MR)
GLi // GL(CR)

GLp
// GL(ΣR) .

On the other hand, the induced map E(CR) → E(ΣR) is surjective. Indeed, the functor
E : Ring → Grp preserves surjections, since it acts like (Ep)(erij) = e

p(r)
ij . By a proposition in

§6 we have K1(CR) = 0, hence GL(CR) = E(CR). We have the following commutative square.

GL(CR)
GLp

// GL(ΣR)

E(CR)

=

OO

Ep
// E(ΣR)
?�

OO

This shows that kerEp = kerGLp, and we thus get a short exact sequence in Grp:

1 // GL(MR) // GL(CR) // E(ΣR) // 1 .

We have observed in §2 that the groups in this short exact sequence satisfy the first condition of
the proposition above. The second condition is also satisfied ( [9, p. 357]). Since K(MR) ' K(R)

(§6), we obtain a homotopy fibration sequence

K(R) // K(CR) // BE(ΣR)+ .

Since K(CR) is contractible (§6), the homotopy fiber of the second map is ΩBE(ΣR)+, and
we get a homotopy equivalence

ΩBE(ΣR)+ ' // K(R). (3)

The proposition in §4 gives that BE(ΣR)+ → K(ΣR) is a universal cover. The previous
lemma yields a homotopy equivalence

ΩBE(ΣR)+ ' // Ω0K(ΣR) . (4)

Composing (4) with a homotopy inverse for (3) gives the desired homotopy equivalence.

Corollary. If n ≥ 1, then Kn(ΣR) ∼= Kn−1(R).

Proof. For n = 1 this was observed in §6.
If n ≥ 2, since the homotopy groups of a space depend only on the connected component of

the base point for n− 1 ≥ 1, we have

Kn(ΣR) = πn
(
K(ΣR)

)
= πn−1

(
ΩK(ΣR)

)
= πn−1

(
Ω0K(ΣR)

) ∼= πn−1(KR) = Kn−1(R).
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Definition. We define the K-theory Ω-spectrum of R, denoted KR, as follows. Define

(KR)n := ΩK(Σn+1R) for n ≥ 0.

The structure maps are given by the homotopy equivalences obtained from (2) applied to the
ring Σn+1R, again using that loop spaces depend only on the connected component of the base
point:

(KR)n = ΩK(Σn+1R)
' // ΩΩ0K(Σn+2R) = Ω2K(Σn+2R) = Ω(KR)n+1 .

Observe that (KR)0 is homotopy equivalent to K0(R) × K(R) where K0(R) is given the
discrete topology. Indeed, (KR)0 = ΩK(ΣR): on one hand the path component of its base point
is Ω0K(ΣR) ' K(R), and on the other hand, we have

π0(ΩK(ΣR)) ∼= π1(K(ΣR)) = K1(ΣR) ∼= K0(R).

Since the path components of a loop space are all homotopy equivalent [3], we have a homo-
topy equivalence (KR)0 ' K0(R)×K(R).

The spectrum KR we have just defined is generally nonconnective, i.e. its negative homotopy
groups might be non-trivial. Its non-negative homotopy groups yield the K-groups:

Proposition. Let n ≥ 0. Then πn(KR) = Kn(R).

Proof.

πn(KR) = colim
p

πn+p((KR)p)

= colim
p

πn+p

(
ΩK(Σp+1R)

)
= colim

p
πn+p+1

(
K(Σp+1R)

)
= colim

p
Kn+p+1(Σp+1R)

= colim
p

Kn(R)

= Kn(R)

The negative homotopy groups of KR can be proven to coincide with the negative K-groups
of R introduced by Bass [10, (IV.10.4.1)].
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