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1. Introduction

The aim of this note is to motivate the definition of a symmetric monoidal ∞-category. We
will start by putting the definition of a classical symmetric monoidal category in a guise more
suitable to generalization to the ∞-setting.

Recall the microcosm principle [BD98]:

Certain algebraic structures can be defined in any category equipped with a cate-
gorified version of the same structure.

The prototypical example is given by monoids. We concentrate on the symmetric case. We call
a monoid symmetric if it is commutative, in order to highlight the connection with symmetric
monoidal categories. So, in this example, the algebraic structure of a “symmetric monoid” can be
defined in any category which is already a symmetric monoid itself, i.e. a symmetric monoidal
category. Note that this reasoning can be applied to itself: a (small) symmetric monoidal
category itself is nothing but a symmetric pseudomonoid (= weak 2-monoid) in the (cartesian)
symmetric monoidal 2-category of small categories Cat. For a reference for 2-categorical stuff,
see [Lac10], [AM10, Appendix C] and [McC00].

The bottom line is: in order to understand symmetric monoidal categories, we might as
well start by understanding symmetric monoids. We start by giving an “unbiased” version of
a symmetric monoid. It should be intuitively easy to grasp what it is, but we also want a
definition which is both concrete and theoretically illuminating. The most familiar path is
perhaps through the theory of monads, but it will be more fruitful to use the theory of operads.
We will see that the operad of commutative monoids is naturally linked to the category of finite
sets, and then to Segal’s category Γ. The conclusive remark is that a symmetric monoid in a
cartesian monoidal category C is equivalently a functor Γop → C that satisfies that some “Segal
maps” are isomorphisms.
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This is easily relaxed to a notion of a “symmetric ∞-monoid”, provided C is a cartesian ∞-
category: we now consider an∞-functor N(Γop)→ C such that the Segal maps are equivalences
in C. Taking C = Top essentially gives Segal’s approach to defining “special Γ-spaces”, which
are a model for E∞-spaces (i.e. symmetric ∞-monoids).

This can be adapted to the categorical setting. Cat is only a 2-category, not an ∞-category
like Top, so what we get is that a symmetric 2-monoid, i.e. a symmetric monoidal category,
is equivalently a (weak) 2-functor Γop → Cat such that the Segal maps are equivalences of
categories (the 2-cells in Γop are identities).

Finally, this also works in the realm of ∞-categories: letting Cat∞ be the ∞-category of ∞-
categories, a symmetric monoidal ∞-category will be an ∞-functor N(Γop)→ Cat∞ satisfying
that the Segal maps are equivalences of ∞-categories.

We’d rather not mess with Cat∞, so instead of taking this last step, what we realize is that
a weak 2-functor Γop → Cat is equivalently a Grothendieck opfibration over Γop, and the Segal
condition translates easily. This is the reformulation of a symmetric monoidal category which
most easily adapts to the ∞-setting. Lurie calls the analog of a Grothendieck opfibration in
the ∞-world a “coCartesian fibration”: a symmetric monoidal ∞-category will be defined as
a coCartesian fibration C → Γop such that some Segal maps are categorical equivalences (i.e.
equivalences of ∞-categories).

2. Unbiased symmetric monoids

Let M be a symmetric monoid, i.e. a set M with a unit µ0 : ∗ → M and a product
µ2 : M ×M →M , such that the associativity, unitality and commutativity axioms are satisfied.

The first remark we should make is that this is a biased definition. Let us explain this.
The structure of a monoid is sufficient to define a unique operation µn : M×n →M such that

µn is obtained by any kind of parenthesizing, adding units, or switching the elements given.
This is easily proven by induction, and it is an easy instance of a coherence theorem. So µ0 is
to be seen as a 0-ary operation, giving the unit, µ1 : M → M is the identity, µ2 is the binary
product, and generally µn is the unique n-ary product.

In fact, it is equivalent to define a monoid by the biased definition given above, or by an
unbiased definition which doesn’t single out the arities 0 and 2 and the associativity, unitality
and commutativity axioms, but instead gives all the operations and all the axioms.

It is instructive to define what an unbiased symmetric monoid really is. Consider the monad
arising from the free-forgetful adjunction

(2.1) Set
F
// CMon.

U
oo

Explicitely, the monad is

T = U ◦ F : Set→ Set, X 7→
⊔
n∈N

X×n/Σn,

where Σn is the n-th symmetric group.
An algebra for T is a set X together with a map TX → X which is associative and unital.

Note that such a map amounts to maps X×n/Σn → X, i.e. Σn-equivariant maps

µn : X×n → X.

If one unwinds the definition of all of this, one gets that this is exactly what an unbiased sym-
metric monoid is expected to be, and the statement that it is the same as a standard monoid is
the statement that there is a natural equivalence of categories T -Alg→ CMon (i.e., that the
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adjunction (2.1) is monadic).1

The monad T comes from an operad. A (symmetric) operad (in Set) is a collection P =

{P (n)}n∈N of sets, together with a unit object 1→ P (1), and functions

P (n)⊗ P (k1)⊗ · · · ⊗ P (kn)→ P (k1 + · · ·+ kn)

for each n, k1, . . . , kn ≥ 0 satisfying unit and associativity axioms, plus a right action of Σn on
P (n), satisfying some compatibility conditions. See [MSS02, Definition II.1.4] or [May97] for a
complete definition.

An algebra for P in a (cocomplete, closed) symmetric monoidal category V is an object A ∈ V
and compatible functions

P (n)�Σn A
⊗n → A

[MSS02, Definition II.1.20], where

P (n)�Σn A
⊗n := colim

σ∈Σn

 ⊔
m∈P (n)

A⊗n →
⊔

m∈P (n)

A⊗n

 ∈ V
with the maps essentially being (m, a1 ⊗ · · · ⊗ an) 7→ (σ−1 ·m, aσ(1) ⊗ · · · ⊗ aσ(n)). One should
think of the set P (n) as parametrizing how many n-ary operations there are in a P-algebra.

There is a category of algebras over P in V, denoted P-Alg(V). If V = Set we suppress it
from the notation.

Let Com be the operad with P (n) = 1 for all n ≥ 0. A Com-algebra is equivalently an algebra
over the monad T (adapted to V), i.e. an unbiased symmetric monoid, because 1�Σn A

⊗n =

A⊗n/Σn. More generally, any operad in V gives rise to a monad in V , but we won’t be needing
this.2

We now fix the definition of an unbiased symmetric monoid once and for all:

Definition 2.2. An unbiased symmetric monoid in V is a Com-algebra in V .

This can be spelled out without too much hassle. For example, the following diagram
encodes both unitality and associativity (the latter is obtained in an indirect way, namely, by
encoding that both traditional ways of going from three factors to one factor by parenthesizing
coincide with the given three-fold way of going from three factors to one directly). So denote by
µn : A×n → A the Σn-equivariant structure maps of the unbiased monoid A. If j = j1 + · · ·+ jk,
the following diagram has to commute.

Aj
µj

//

∼=
��

A

Aj1 × · · · × Ajk
µj1×···×µjk

// Ak

µk

OO

We have given the definition of an operad in Set for simplicity, but note that one can define
an operad in any symmetric monoidal category C, and there are algebras for that operad in any
C-enriched symmetric monoidal category V .

1Note that this also gives that an unbiased morphism of unbiased monoids coincides with morphisms of
monoids.

2It is V → V, X 7→
⊔

n∈N P (n)⊗Σn
X⊗n.
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3. The prop associated to an operad

[Lei00, Section 1.6] Let V be a cocomplete closed symmetric monoidal category.

Theorem 3.1. Let P be an operad. There exists a symmetric strict3 monoidal category P̂ and
an equivalence of categories

P-Alg(V) ' StrongSym(P̂ ,V)

where StrongSym denotes strong symmetric monoidal functors.

There are several ways to construct P̂. Let us concentrate on the P that matters to us, i.e.
Com. Then

Ĉom = Fin,

and therefore

(3.2) Com-Alg(V) ' StrongSym(Fin,V).

Fin is a skeleton of the category of finite sets. Its objects are the natural numbers n =

{0, . . . , n− 1}, n ≥ 0 (for n = 0 this is empty), and the morphisms are the functions between
those sets. The monoidal product of m and n is m + n = {0, . . . ,m+ n− 2}, and its unit is 0.
The symmetry is the map m + n→ n + m which you would expect. Thus, it is a symmetric
strict monoidal category. See [Gra01, Section 2]

A general procedure to build P̂ is as the “free symmetric strict monoidal category containing
a P-algebra”. So the claim is that Fin is the free symmetric strict monoidal category containing
a symmetric monoid. The symmetric monoid in question is the finite set 1 with unit 0 → 1

and multiplication 2→ 1. It might be more instructive to see how to associate to an unbiased
symmetric monoid in V , i.e. a Com-algebra in V , a strong symmetric monoidal functor Fin→ V ,
so let us do this.

For simplicity, suppose V = Set and let A be an unbiased symmetric monoid. We have maps
µn : A×n/Σn → A, which take any set of n elements in A and give you an element of A (the
order of the elements does not matter, so we might as well consider that µn takes as input a
set of n elements).

Define a strong symmetric monoidal functor Fin→ Set given by n 7→ A×n, and if f : n→m

is a function, then the function A×n → A×m is given by

(a1, . . . , an) 7→
(
µ#f−1(0){ai : i ∈ f−1(0)}, . . . , µ#f−1(m−1){ai : i ∈ f−1(m− 1)}

)
.

It is perhaps clearer to express this as

(3.3) (a1, . . . , an) 7→

 ∏
i∈f−1(0)

ai, . . . ,
∏

i∈f−1(m−1)

ai


where an empty product denotes a unit.

Conversely, if F : Fin → Set is a strong symmetric monoidal functor, let A = F (1). Then
F (1) is an unbiased symmetric monoid: let n→ 1 be the unique map, so when we apply F we
get F (n) ∼= F (1)n = An → A, the isomorphism gotten because F is strong and n = 1+ · · ·+ 1.

Side remark 3.4. There is a non-commutative analog for all of this. One can consider non-
symmetric operads (with no symmetric group actions), and algebras for these. Now Ass is
the non-symmetric operad having one element in each degree. Algebras over Ass are unbiased
monoids. The prop for Ass is now Ord, the category of finite ordinals and order-preserving
functions (i.e., it is the free strict monoidal category with a monoid). Just as the morphisms

3The wording is carefully chosen to suggest that we are not imposing that A⊗B = B ⊗A.
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of Ord are generated by certain coface and codegeneracy maps, the morphisms of Fin are
generated by coface, codegeneracy, and main transpositions, see [Gra01, Section 3].

4. The cartesian scenario

[Lei00, Section 3.1] Suppose that V is now cartesian, so we denote it by C. This means that
the unit of V is a terminal object, and that the monoidal product is a categorical product. It
turns out that in this case, we have yet another formulation of an unbiased symmetric monoid.

Definition 4.1. Γ is the opposite category of Fin∗, where Fin∗ is a skeleton of the category
of finite pointed sets.4 Concretely, the objects of Fin∗ are [n] = {0, . . . , n}, n ≥ 0, and maps
are functions mapping 0 to 0. Note that, with our notation, both n ∈ Fin and [n− 1] ∈ Fin∗
are sets with n elements.

Remark 4.2. I think it was Segal [Seg74] who introduced Γ, though actually he didn’t identify it
as the opposite category of Fin∗ (I think the identification is due to Anderson [And71, Section
3]). Instead, he described it directly: its objects are the n, n ∈ N, and a map n → m in Γ is
a function n → P(m) such that the images of two different i are disjoint. The composition
n

f→m
g→ p maps i to

⋃
j∈f(i) g(j). The equivalence of this category with Finop

∗ corresponds n
with [n].

Note as well that Fin∗ is equivalent to a skeleton of the category of finite sets with partially
defined functions (i.e. functions defined on a subset of the domain).

Theorem 4.3. There is an isomorphism of categories

SColax(Fin, C) ∼= Fun(Γop, C),

where SColax denotes colax symmetric monoidal functors.
Under this isomorphism, the functors Fin→ C which are strong correspond to the functors

Y : Γop → C satisfying the following equivalent conditions:
(1) For all m,n ≥ 0, the map in C

(4.4) (Y (π1), Y (π2)) : Y [m+ n]→ Y [m]× Y [n]

is an isomorphism. The maps π1 : [m+ n]→ [m] and π2 : [m+ n]→ [n] are the obvious
ones.

(2) For all n ≥ 0, the following Segal map in C

(4.5) (Y (ρ1), . . . , Y (ρn)) : Y [n]→ Y [1]n

is an isomorphism, where ρj : [n]→ [1], j = 1, . . . , n maps j to 1 and everything else to
0.

Proof. Let X : Fin → C be colax, with structure map ∇. We associate to it the functor
Y : Γop → C which we now define. Set Y [n] = X(n). Now let ηm : 1 + m in Fin be the map
i 7→ 1 + i. If g : [m]→ [n] is in Γop, define g : 1 + m→ 1 + n in Fin obviously. For such a g,
define Y (g) as the composition

X(m)
X(ηm)

// X(1 + m)
X(g)

// X(1 + n)
∇
// X(1)×X(n)

π2
// X(n).

Now let Y : Γop → C be any functor. We associate to it a functor X : Fin → C, given by
X(n) = Y [n]. If f : m → n is in Fin, there is an obvious associated map [f ] : [m] → [n] in

4Leinster’s opinion is that one shouldn’t think too hard about Γop being obtained by pointing the objects of
Fin, which is the prop for Com. He suggests that this line of thought is a “distracting coincidence”, or a “red
herring”. See Side Remark 4.9.
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Γop, so define X(f) = Y [f ]. As for the colax structure, the counit X(0)→ 1 is the unique such
map. The structure map X(m + n)→ X(m)×X(n) is given by (4.4).

It is obvious that a colax X : Fin→ C is strong if and only if its associated Y satisfies that
(4.4) is an isomorphism. It remains to prove that conditions (1) and (2) are equivalent. To
prove that (1) implies (2), note that the Segal map can be obtained as the composition

Y [n]→ Y [n− 1]× Y [1]→ Y [n− 2]× Y [1]× Y [1]→ · · · → Y [1]n,

so as a composite of isomorphisms, it is an isomorphism. Conversely, note that the Segal map
Y [m+ n]

∼=→ Y [1]m+n ∼= Y [1]m × Y [1]n splits as a composition

Y [m+ n]→ Y [m]× Y [n]
∼=→ Y [1]m × Y [1]n

where the latter map is a product of two Segal maps, so by the 2-out-of-3 property for isomor-
phisms, the map Y [m+ n]→ Y [m]× Y [n] is an isomorphism. �

We will use the second condition more often. Note that when n = 0, this means that we have
an isomorphism Y [0]→ 1.

Putting together this theorem with (3.2) we get:

Corollary 4.6. There is an equivalence of categories between unbiased symmetric monoids in
C and functors Γop → C satisfying that the Segal maps are isomorphisms.

In the case C = Set, if A is a symmetric monoid then its associated functor Y : Γop → Set is
[n] 7→ An, and f : [n]→ [m] goes to the function An → Am given by

(4.7) (a1, . . . , an) 7→

 ∏
i∈f−1(1)

ai, . . . ,
∏

i∈f−1(m)

ai

 ,

compare with (3.3). Define

(4.8) mn : [n]→ [1], 0 7→ 0, i 7→ 1 when i 6= 0,

then Y mapsm2 to the binary multiplication of A, and the highermn to the higher multiplication
of A. The only map [0]→ [1] maps to 1→ A, the unit map of A. The Segal maps are identities.

Side remark 4.9. Just as in Remark 3.4, there is a non-commutative analog. The place of Γ is
now taken by ∆, and as in Footnote 4, Leinster’s opinion is that one shouldn’t think too hard
about ∆op being obtained as the opposite category of the category obtained by removing the
empty set from Ord.

A generalization of Theorem 4.3 is in [Lei00, Proposition 3.1.5]. Γop is then revealed as the
Kleisli category for the monad 1 × − on Fin, and ∆op as the Kleisli category for the monad
1×−× 1 on Ord.

Barwick [Bar17] studies the passage from Fin (resp. Ord) to Γop (resp. ∆op) more systemat-
ically. He calls the latter the Leinster category of the former. He writes that the corresponding
monads “add points to any object in all the ways one can do so functorially”.

Actually, this passage had already been obtained (in a different form) by [MT78] (resp.
[Tho79]): Γop (resp. ∆op) is the category of operators for the operad Com (resp. the non-
symmetric operad Ass). This can be characterized as the free semi-cartesian monoidal category
on the free semi-cartesian operad associated to that operad. See [Shu]. In [MT78, Definition
1.2], the notion of a Ĉ-space where Ĉ is the category of operators of an operad C is studied,
and it essentially coincides with the notion of a “homotopy algebra” of [Lei00].
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5. Weakening

Now suppose C has a subcategory of weak equivalences. Then a definition for a symmetric
∞-monoid in C could be a functor Γop → C such that the Segal maps are weak equivalences.
We promote this to a definition:

Definition 5.1. Let C be a cartesian category with weak equivalences. We define a Γ-object in
C to be a functor Γop → C, and a special Γ-object to be a Γ-object Y such that the Segal maps

(5.2) (Y (ρ1), . . . , Y (ρn)) : Y [n]→ Y [1]n

are weak equivalences.

Remark 5.3. We have deliberately not defined the concept of a “cartesian category with weak
equivalences” – the class of weak equivalences should definitely satisfy 2-out-of-3, and a cartesian
monoidal model category should, in any case, be a source of examples.

In the proof of the equivalence of conditions (1) and (2) in Theorem 4.3, the only thing we
used about the class of isomorphisms was that it satisfies 2-out-of-3. Therefore, a Γ-object is
special if and only if the maps (4.4) are weak equivalences, though we shall not be using this.

This terminology is classical: I think it was introduced in [And71] following Segal, and was
then adopted in [BF78] (note that [Seg74] calls “Γ-object” what we call a “special Γ-object”).

Example 5.4. The archetypical example for C is Top (say, compactly generated weakly Hausdorff
spaces) with the class of weak equivalences being the homotopy equivalences. Then special
Γ-spaces were an early model of E∞-spaces, i.e. symmetric ∞-monoids.

If Y is a special Γ-space, then there is a weak equivalence Y [2]→ Y [1]× Y [1], so speaking
informally, “the multiplication of two elements in Y is given by

(5.5) Y [1]× Y [1] Y [2]
(Y (ρ1),Y (ρ2))

∼
oo

Y (m2)
// Y [1] ” .

This is not an honest map, “just as” there is no chosen composition of arrows in an ∞-category.
To get an honest map, one should pick a homotopy inverse for (Y (ρ1), Y (ρ2)).

Side remark 5.6. Taking π0 of (5.5) shows that π0Y [1] is a symmetric monoid under the operation

π0Y [1]× π0Y [1] π0Y [2]
∼=
oo // π0Y [1] .

If π0(Y ) has an inverse, i.e. if it is an abelian group, we say that Y is a very special Γ-space.
These are a model for grouplike E∞-spaces, infinite loop spaces and connective spectra. But
this doesn’t go in the direction we want to head.

Side remark 5.7. Leinster [Lei00, Theorem 3.1.2] proves that, under the correspondence of
Theorem 4.3, the colax symmetric monoidal functors whose structure maps are weak equivalences
coincide with the special Γ-objects, provided we work in a setting [Lei00, Definition 2.1.1] which,
in fact, is quite restrictive. It turns out that for a monoidal model category to fit in this setting,
all objects have to be cofibrant (since in a general monoidal model category, the tensor product
of two weak equivalences is a weak equivalence provided enough of the objects concerned are
cofibrant). Leinster used this theorem to motivate the definition of a symmetric ∞-monoid
(which he calls a “homotopy Com-algebra”) in any symmetric monoidal (not necessarily cartesian)
category V as a colax symmetric monoidal functor Fin → V whose structure maps are weak
equivalences, but as we have seen, the setting is too restrictive (more accepted definitions of
∞-algebras for ∞-operads can be found in [Lur12]). At any rate, once more, this is not the
path we want to take: we’ll stick to the definition involving Γ-objects.
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6. Symmetric monoidal categories, revisited

We have recast the definition of an unbiased symmetric monoid in a cartesian monoidal
category C as a Γ-object in C such that its Segal maps (4.5) are isomorphisms. By the general
nonsense explained in the introduction, this should help in formulating a definition of an
unbiased symmetric monoidal category.

The problem is that a symmetric monoidal category is not really a monoid, but a symmetric
pseudomonoid (or weak monoid) in the 2-category Cat. Indeed, the definition of a symmetric
monoidal category uses the 2-cells in Cat: we do not ask for example that A⊗ (B⊗C) be equal
to A⊗ (B ⊗ C): instead, we’ll have the component of a natural isomorphism between them.

What should an unbiased symmetric monoidal category be? It should be a weak algebra for
Com in Cat (let us sweep size issues under the rug). In fact, there is a theory of weak algebras
for 2-monads (and I guess an analogous thing must exist for 2-operads in monoidal bicategories),
it does give the right thing, and one can write down explicitly what it gives. See [Lei04, Section
3.1] for details. One specifies a category V, operations V×n/Σn → V and a ton of associators
and unitors satisfying a lot of things.

Is this the same as a symmetric monoidal category? In the monoid case, this theorem
was simple: the fact that we can prove e.g. (ab)(cd) = a((bc)d) follows easily from standard
associativity. Here, it’s subtler, and it’s exactly the content of Mac Lane’s coherence theorem,
which states that the small list of axioms given for a symmetric monoidal category satisfy to
prove that everything which should agree, agrees. 5 [Lei04, Section 3.1] gives a great exposition
of this.

So here’s how we proceed:
0) The 2-category of symmetric monoidal categories and strong symmetric monoidal func-

tors is equivalent to the 2-category of unbiased symmetric monoidal categories, which
are weak Com-algebras in Cat,

1) which is equivalent to some 2-category of weak monoidal pseudofunctors Fin→ Cat,
2) which is equivalent to the 2-category of pseudofunctors Γop → Cat such that the Segal

maps are equivalences of categories.
I have explained (0). I won’t explain (1), but it is an intermediate step we do not need,

and I haven’t thought about it deeply; at any rate, the correct notion of a weak monoidal
pseudofunctor should be somewhere in [McC00, Section 4]. As for (2), it is easy to believe.
Note that this is not exactly about special Γ-categories, for such things are merely functors (not
pseudofunctors). 6 Here we are considering Γop as a 2-category with only identity 2-cells.

Summing up, what matters is:

Theorem 6.1. There is an equivalence of 2-categories between symmetric monoidal categories
with strong symmetric monoidal functors and the 2-category of pseudofunctors Γop → Cat such
that the Segal maps (5.2) are equivalences of categories.

So if V is a symmetric monoidal category, then its associated Y : Γop → Cat takes [n] to
V×n, takes m2 : [2] → [1] (4.8) to the tensor product functor, [0] → [1] to the unit, and the

5Note that there is an analog theorem for symmetric monoidal functors, proving that an unbiased monoidal
functors (of whichever type) correspond to monoidal functors (of the same type).

6The notion of (3) could be called 2-special Γ-category, since it uses the 2-categorical structure of Cat. Note
that special Γ-categories are interesting, only for other purposes. E.g. the levelwise nerve of a special Γ-category
is a special Γ-space (or rather, Γ-simplicial set), and this is extremely fruitful, because every symmetric strict
monoidal category (a “permutative category”) gives rise to a special Γ-category via a “K-theory” functor, see
[Seg74] and [Man10].
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higher mn : [n]→ [1] to the higher tensor product functors. More generally, if f : [n]→ [m] in
Γop, then Y (f) : V ×n → V×m is a functor such that, on objects,

(A1, . . . , An) 7→

 ⊗
i∈f−1(1)

Ai, . . . ,
⊗

i∈f−1(m)

Ai


and defined obviously on arrows. Compare with (4.7) for the case of symmetric monoids in Set.

Note that this makes Y a pseudofunctor and not a functor. Indeed: take e.g.

[3]
f
// [2]

m2
// [1]

where f is i 7→ i for i = 0, 1, 2 and 3 7→ 2. The composition is m3, hence Y (m3) is the
triple product map V×3 → V, and Y (m2) ◦ Y (f) is the functor V×3 → V given on objects
by (A,B,C) 7→ A ⊗ (B ⊗ C). These are not equal in general, only connected by a natural
isomorphism. Note that by considering the pointed map [3]→ [2] given by 1 7→ 1, 2 7→ 1, 3 7→ 2

we recover the standard associator.

7. The Grothendieck construction

[Gro10, Section 4.1], [Vis05, Chapter 3].
We now describe a construction which allows us to rephrase the concept of a “pseudofunctor

out of a 1-category” entirely in 1-categorical terms.
We first need some preliminary definitions.

Definition 7.1. Let p : C → B be a functor and b ∈ B. The fiber of p over b is the category Cb
fitting into the pullback

Cb //

��

C
p

��

0
b
// B.

More precisely, Cb has objects the c ∈ C such that p(c) = b, and the arrows are maps c → c′

that map to idb by p.

Definition 7.2. Let p : C → B be a functor and let f : c1 → c2 be an arrow in C. The arrow f

is p-coCartesian if the following is a pullback diagram for all c3 ∈ C.

C(c2, c3)
f∗

//

p

��

C(c1, c3)

p

��

B(p(c2), p(c3))
p(f)∗

// B(p(c1), p(c3)).

Let α = p(f) : b1 → b2. We say that f is a p-coCartesian lift of α.
Note that the pullback condition above can be rephrased as: the following functor is an

isomorphism

(7.3) Cf/ → Cc1/ ×Bp(c1)/ Bp(f)/.

This can be rephrased more elementarily in terms of a lifting property for morphisms [Gro10,
Proposition 4.2]. What we need is actually the following

Lemma 7.4. Let f : c1 → c2 and f ′ : c1 → c′2 be two p-coCartesian lifts of α : b1 → b2. Then
there is a unique isomorphism ϕ : c2 → c′2 in Cb2 such that ϕ ◦ f ′ = f .
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So p-coCartesian lifts with a fixed domain are essentially unique, when they exist. We consider
existence in the following

Definition 7.5. A Grothendieck opfibration over B is a functor p : C → B such that for every
c1 ∈ C and every α : p(c1) → d in D there is a p-coCartesian lift c1 → c2 of α. These form a
category denoted Opfib(B).

For a Grothendieck opfibration p : C → B, choosing a p-cocartesian lift for an arrow α : b1 → b2

in B (it is essentially unique by the above lemma) defines a functor

α! = Cα : Cb1 → Cb2 ,

mapping c1 to the codomain of any p-coCartesian lift of α. Using the lemma above one can
prove that there is an essentially unique pseudofunctor

(7.6) C− : B → Cat, b 7→ Cb, (α : b1 → b2) 7→ (Cα : Cb1 → Cb2).

One can go the other way, and associate to a pseudofunctor B → Cat a Grothendieck
opfibration over B:

Definition 7.7. Let F : B → Cat be a pseudofunctor. We define the category of elements of
F ,
∫
F . The objects of

∫
F are pairs (b, a) where b ∈ B and a ∈ Fb. An arrow (b, a)→ (b′, a′)

consists of an arrow f : b→ b′ in B and an arrow F (f)(a)→ a′ in Fb′.7

Note that there is an obvious projection functor
∫
F → B forgetting the second variable.

Proposition 7.8. [Vis05, 3.1.3] The construction
∫

is functorial. The projection
∫
F → B is

a Grothendieck opfibration over B, and there is an equivalence of 2-categories∫
: Pseudo(B,Cat)→ Opfib(B)

where Pseudo denotes pseudofunctors. The inverse is given by choosing coCartesian lifts8 and
considering the fiber functor (7.6).

It is instructive is to check what happens in the case of a symmetric monoidal category V.
Let Y : Γop → Cat be the pseudofunctor associated to it via Theorem 6.1. Then

∫
Y is the

category with objects ([n], (A1, . . . , An)), where [n] ∈ Γop and Ai ∈ V for all i. We might as
well just denote them by (A1, . . . , An). A morphism is given by a map f : [n]→ [m] in Γop and
a map  ⊗

i∈f−1(1)

Ai, . . . ,
⊗

i∈f−1(m)

Ai

→ (B1, . . . , Bm) in V .

We denote the category
∫
Y by V⊗.9 It should be instructive to check explicitely what it means

in this case for V⊗ → Γop to be a Grothendieck opfibration.

7This is the 2-pullback of F along Cat∗ → Cat, where Cat∗ is the 2-category of lax-pointed categories, i.e.
its objects are pairs (C, c) where C is a category and c ∈ C, and the morphisms are functors F : C → C′ together
with an arrow F (c)→ c′. The functor Cat∗ → Cat is the obvious projection.

8I.e., choosing a cleavage, see [Vis05, Definition 3.9].
9Lurie [Lur12, Construction 2.0.0.1] constructs the same V⊗, but his description is slightly different, because

whereas we interpret a functor Γop → Cat as a covariant functor Fin∗ → Cat, he interprets is as a contravariant
functor Γ→ Cat using the explicit description of Γ given in Remark 4.2.



MONOIDS 11

Lemma 7.9. Let Y : Γop → Cat be a pseudofunctor. It satisfies that the Segal maps (4.5)
are equivalences of categories if and only if its corresponding Grothendieck opfibration C → Γop

satisfies that the functor

(7.10) (Cρ1 , . . . , Cρn) : C[n] → C×n[1]

is an equivalence of categories for all n ≥ 0, where the ρi : [n]→ [1], i = 1, . . . , n were defined
in (4.5).

Pasting the previous proposition with the previous lemma and with Theorem 6.1, we obtain
the following

Corollary 7.11. There is an equivalence of 2-categories between symmetric monoidal categories
with strong symmetric monoidal functors and Grothendieck opfibrations with base Γop such that
the functors (7.10) are equivalences of categories.

For example, let p : C → Γop is a Grothendieck opfibration satisfying that the Segal maps
(7.10) are equivalences. The symmetric monoidal category associated to it will be C[1]. The
Segal condition for n = 0 says that C[0] is equivalent to a category with a single object, and the
only map [0]→ [1] determines the unit object of C[1]. Using the map m2 from (4.8), we get

C[1] × C[1] C[2]
∼

(Cρ1 ,Cρ2 )
oo

m2

// C[1]

so choosing a pseudo-inverse for the left map we get a product map C[1]×C[1] → C[1], well-defined
up to canonical isomorphism, etc. (see [Lur12, Under Remark 2.0.0.6] for more worked-out
details on how this gives a symmetric monoidal structure on C[1]). Compare with the Example
5.4 of special Γ-spaces. 10

8. Symmetric monoidal ∞-categories

[Gro10, Section 4.2], [Lur09] and [Lur12, Section 2.0].
The definition of a symmetric monoidal ∞-category is an adaptation of the characterization

given in Corollary 7.11 to the ∞-world. The analog of a Grothendieck opfibration will be a
“coCartesian fibration” of ∞-categories. We adapt the definitions.

Definition 8.1. Let p : X → S be a map of simplicial sets and s ∈ S. The fiber of s under p
is the simplicial set Xs given by the pullback

Xs
//

��

X

p

��

pt
s
// S.

Definition 8.2. A map p : X → S of simplicial sets is an inner fibration if it has the right
lifting property with respect to the inner horns Λn

k → ∆n, 0 < k < n:

Λn
k

//

��

X

p

��

∆n

>>

// S.

Remark 8.3. (1) By definition, the map X → pt is an inner fibration if and only if X an
∞-category.

10Using the terminology from Footnote 6, special Γ-spaces model symmetric∞-monoids in Top, and 2-special
Γ-categories model symmetric (weak) 2-monoids in Cat.



12 BRUNO STONEK

(2) Any class of morphisms defined by a right lifting property is closed under base change,
so inner fibrations are, too. I.e. if S ′ → S is a map of simplicial sets, then its pullback
against p is an inner fibration X ′ → S ′. Combining this remark with the previous one,
we get that the fiber of an arbitrary inner fibration is an ∞-category. Lurie [Lur09,
Section 2.3] says: “we may therefore think of p as encoding a family of ∞-categories
parametrized by S. However, the fibers Xs depend functorially on s in a very weak
sense”. This weak functoriality is what a co-Cartesian fibration, defined below, remedies.

(3) Given a functor F : C → D between ordinary categories, its nerve NF : NC → ND is
automatically an inner fibration. Thus, the notion of inner fibration does not have a
classical categorical counterpart.

Definition 8.4. Let p : C → B be a functor between ∞-categories. An arrow f : c1 → c2

is p-coCartesian, or a p-coCartesian lift of α := p(f), if the following map is an acyclic Kan
fibration:

Cf/ → Cc1/ ×Bp(c1)/ Bp(f)/.

Definition 8.5. A functor p : C → B between ∞-categories is a coCartesian fibration if p is an
inner fibration, and for all c1 ∈ C and all α : p(c1) → b2 in B there exists a p-coCartesian lift
f : c1 → c2 of α.

Remark 8.6. [Gro10, Perspective 4.16] Just as in the classical case, Lurie proves that giving a
coCartesian fibration p : C → B is equivalent to giving a functor (i.e. an∞-functor!) B → Cat∞,
where Cat∞ is the ∞-category of ∞-categories. This seems complicated, but luckily we don’t
need to go down this road.

It is important, though, to know that similarly to the classical categorical case (7.6), any map
α : b1 → b2 in B induces an essentially unique functor α! = Cα : Cb1 → Cb2 defined by means of
coCartesian lifts.

We’re now almost ready to define a symmetric monoidal ∞-category, but first we need an
elementary definition. Recall that H denotes the homotopy category of spaces.

Definition 8.7. [Lur09, 1.1.5.14] [Gro10, 1.35] A map f : S → T of simplicial sets is a
categorical equivalence if the induced map hf : hS → hT is an equivalence of H-enriched
categories.

Equivalently, this means that C(f) : C(S)→ C(T ) is an equivalence of simplicial categories11,
i.e. the functor π0C(f) : π0C(S)→ π0C(T ) is essentially surjective, and for all x, y ∈ C(S) the
map MapC(S)(x, y)→ MapC(T )(C(f)(x),C(f)(y)) is a weak equivalence of simplicial sets (i.e. it
induces a weak homotopy equivalence of spaces after geometric realization). See [Lur09, Lemma
3.1.3.2] for conditions on f which are equivalent to being a categorical equivalence.

And finally, drawing inspiration from Corollary 7.11, we have:

Definition 8.8. A symmetric monoidal∞-category is a coCartesian fibration C → N(Γop) such
that the functor

C[n]

(Cρ1 ,...,Cρn )
// (C[1])

×n

is a categorical equivalence for all n ≥ 0.

11Also called a Dwyer-Kan equivalence.
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Remark 8.9. There is likely an equivalent formulation of the sort: a symmetric monoidal ∞-
category is an ∞-functor N(Γop) → Cat∞ satisfying that some Segal map is a categorical
equivalence.12

We can now start doing higher algebra.
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