
LURIE’S CONSTRUCTION OF THE SMASH PRODUCT OF SPECTRA

BRUNO STONEK

ABSTRACT. These are notes for a talk in which I present Lurie’s construction of the smash product
of spectra and some related results to an audience with a casual acquaintance with ∞-category
theory.
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1. HISTORICAL INTRODUCTION

In order to appreciate why a construction of a good smash product of spectra is a big deal,
it’s useful to recall some history.

By the late 1960s, there was an established answer to what is the right object that deserves
to be called the “stable homotopy category”, or “the homotopy category of spectra” SHC.
Michael Boardman was the one to give the first construction on some mimeographed notes, see
also [Vog70]. Spanier and Whitehead had constructed their eponymous category in 1953, but
it was deficient in that not every cohomology theory on spaces could be represented in it, for
example.

What was now needed was a smash product in order to reflect the multiplicativity of some
cohomology theories at the level of their representing spectra. It’s not immediately obvious
how to build such a smash product in SHC: if X and Y are spectra, then how to make a
spectrum out of {Xn ∧ Ym}n,m≥0? The reader inspired by chain complexes could think that a
similar solution would work here. But there seems to be no way of defining the structure maps
that doesn’t depend of making some arbitrary choices and, moreover, the unit would be forced
to be the trivial spectrum instead of the sphere spectrum S, which is not a behavior we want...

The solution found by Adams [Ada74] was to consider any cofinal choice of a poset N ⊆N×
N: these are his famous “handicrafted smash products”. They furnish SHC with a symmetric
monoidal structure with unit S, all right. But before taking homotopy, that is, in the category of
spectra, it’s not associative.

It’s useful to use the vocabulary from abstract homotopy theory to phrase what it is exactly
that we want. I might as well just quote May [May99]:

The ideal category of spectra should be a complete and cocomplete Quillen
model category, tensored and cotensored over the category of based spaces (or
simplicial sets), and closed symmetric monoidal under the smash product. Its
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homotopy category (obtained by inverting the weak equivalences) should be
equivalent to Mike [Boardman]’s original stable homotopy category.

If we had such an ideal category of spectra, then ideally we’d also get a model category of
A∞ or E∞-ring spectra, allowing us to do homotopy theory with them (e.g. consider homotopy
(co)limits of those, which is not possible at the level of the homotopy category).

It took some thirty years to get such ideal categories: see [EKMM97], [HSS00], [MMSS01].
EKMM’s S-modules make use of some clever observation of Hopkins about the linear isome-
tries operad. It builds on the category of coordinate-free May spectra from [LMSM86]. The
categories of symmetric spectra and orthogonal spectra look more similar to the classical
(pre)spectra, but their component spaces are endowed with actions by the symmetric or orthog-
onal groups. The categorical construction given by the Day convolution product is used to get
the smash product.

As attested by this long quest for a good smash product, there’s nothing obvious about its
construction or even its existence. That’s why a radically different approach to it, some 15 years
after the first construction and with some new technology, is worthy of notice.

2. A LAYOUT OF LURIE’S APPROACH

Before we start the exposition proper, let’s make a summary of the approach.
In my opinion, the biggest conceptual difference in this construction is that it does not

proceed by looking at some category of spectra and building a monoidal product for it by hand.
Instead, we will consider the ∞-category of spectra Sp as an object inside a bigger ∞-category
of ∞-categories. The most fundamental property of Sp is that it is stable, and we will use that
Sp is indeed very special among stable ∞-categories. The emergence of Sp as a symmetric
monoidal ∞-category follows from the fact that stable ∞-categories are a smashing localization
of ∞-categories.

Ultimately, it boils down to this: monoidal units 1 of symmetric monoidal ∞-categories
are canonically commutative algebras therein, in a very simple way: the multiplication is
the natural equivalence 1 ⊗ 1 ' 1 and the unit is the identity. So it’s enough to find some
symmetric monoidal ∞-category whose commutative algebras are exactly closed symmetric
monoidal ∞-categories, and which has Sp as its monoidal unit.

This is all quite vague: let’s make it a little less vague.

(1) First, a technical point: we don’t consider all ∞-categories but only the presentable ones
together with colimit-preserving functors. These form the ∞-category PrL.

(2) Then, we will observe that the subcategory PrL
St ⊆ PrL of stable presentable ∞-categories

is a reflective localization of it. The localization functor is given by Sp(−), the functor
taking spectrum objects.

(3) We will now see the ∞-category Sp being singled out: the functor Sp(−) is equivalent
to Sp⊗−. This ⊗ is a symmetric monoidal product on PrL such that C⊗ C′ corepre-
sents the functor sending D to the ∞-category FunL,L(C× C′,D) of functors preserving
colimits separately in each variable.

(4) Therefore, the localization functor PrL → PrL
St has a special form: Sp ⊗ −. This is

equivalent, by some general theory, to Sp being an idempotent object of PrL under ⊗:
essentially, Sp⊗ Sp ' Sp.

(5) This idempotency property endows Sp with the structure of a commutative algebra
in PrL. Unfolding the definitions, a commutative algebra in PrL is precisely a closed
symmetric monoidal presentable ∞-category. This gets us the result.

(6) A universal property is established along the way, namely: (Sp,∧, S) is initial among
stable presentable closed symmetric monoidal ∞-categories. This follows from the
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equivalence of PrL
St with ModSp(PrL), i.e. the ∞-category of modules over (Sp,∧, S) ∈

CAlg(PrL).
(7) In conclusion, the smash product in Sp is completely determined by asking that it

determine a closed symmetric monoidal structure, and that S be the unit.

3. PRESENTABLE ∞-CATEGORIES

Instead of working with model categories as a device for encoding a homotopy theory, Lurie
[Lur09b], [Lur17] uses ∞-categories, also known as quasicategories or weak Kan complexes.
The ∞-category of spaces1 is denoted by S.

We shall be interested in a special class of ∞-categories called presentable. The 1-categorical
analog is more often called “locally presentable”. There are several ways to understand this
important concept; a short introduction can be found in [Gro20]. One way of formulating a
definition is: C is presentable if it is cocomplete, locally small [Lur09b, 5.4.1.7] and there exists a
regular cardinal κ and a set S of κ-compact objects of C such that every object of C is a colimit of
a small diagram taking values in the full subcategory of C spanned by S [Lur09b, 5.5.1.1]. Here,
a κ-compact object is an object c ∈ C such that C(c,−) : C→ S preserves κ-filtered colimits. It’s
easiest to think of the case κ = ℵ0, in which case the 1-categorical analogue is called a locally
finitely presentable category.

The ∞-category of spaces S is presentable: we can take S = {∗}, since for X ∈ S, we have

X ' colim(X
{∗}−−→ S). This is an ∞-categorical analog of the fact that every set is a colimit of

the set with one element, which is a particular case of the fact that every presheaf is a colimit
of representable ones.

A couple of important facts: presentable ∞-categories are complete [Lur09b, 5.5.2.4]. A
version of the adjoint functor theorem says that if F : C→ D is a functor between ∞-categories
and C is presentable, then F is a left adjoint as soon as it preserves colimits [Lur09b, 5.5.2.9/10].

Of special interest to us will be the ∞-category PrL with objects given by (small)2 presentable
∞-categories and arrows given by colimit-preserving functors. I’ve informally heard, though,
that presentability is not actually needed for what’s presented in this note, and that the main
results go through if you consider the larger ∞-category of all cocomplete ∞-categories with
colimit-preserving functors.

4. LOCALIZATIONS

The word “localization” is often used in the following sense: you have a category C and
a class of arrows S in it, and you want to construct a category S−1C which is the universal
category with the arrows in S inverted. Sometimes, the category S−1C is actually a subcategory
of C, in which case the localization is called “reflective”. For example, if f : R → S is an
epimorphism of commutative rings (e.g. a quotient or a localization), then the extension of
scalars functor S⊗R − : ModR → ModS is a reflective localization [sta, 08YS]: ModS can be
identified with a subcategory of ModR. For example, if f : Z → Q, then this subcategory
consists of the torsion-free divisible abelian groups. The functor −⊗Q : ModZ → ModQ is the
localization at the morphisms of abelian groups g : A→ B such that g⊗Q is an isomorphism.

Lurie reserves the word “localization” for a reflective localization, so we shall do the same.
In other words:

Definition 4.1. A functor of ∞-categories L : C→ D is a localization if it has a fully faithful right
adjoint i3. We will denote by η : idC ⇒ iL a unit for this adjunction.

1Or “anima” in the terminology of Peter Scholze.
2We shall generally ignore size considerations.
3Which we will often omit from the notation, as we may think of i as the inclusion of a subcategory.
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See [Lur09b, 5.2.7.4] and [Lur, 02F5] for alternative formulations and properties.

4.1. Smashing localizations. There is a special type of localization of symmetric monoidal
∞-categories which has particularly good properties.

Definition 4.2. Let (C,⊗, 1) be a symmetric monoidal ∞-category. An object E ∈ C is idempotent
if there exists a morphism e : 1→ E inducing an equivalence

E ' 1⊗ E e⊗id−−→ E⊗ E.4

Proposition 4.3. [Lur17, 4.8.2.4/7] Let (C,⊗, 1) be a symmetric monoidal ∞-category and E ∈ C.
Then

L := E⊗− : C→ C

is a localization onto its essential image LC if and only if E is idempotent. The object E is idempotent via
e : 1→ E if and only if the unit of the adjunction (L, i) is of the form e⊗ id : idC ⇒ iL.

In this situation, LC can be endowed with a symmetric monoidal structure (LC,⊗, L1 ' E) such
that L : C → LC is symmetric monoidal, its right adjoint i is lax symmetric monoidal, and it satisfies
that i(d)⊗ i(d′) ' i(d⊗ d′).5

Remark 4.4. Knowing that (L = E⊗−, i) is a smashing localization with unit η we can recover
e : 1→ E as η1 : 1→ E⊗ 1 ' E.

A localization as above is called a smashing localization. This is the terminology of [Rav84].

The above properties imply that there is an induced adjunction CAlg(C)
L
// CAlg(LC)

i
oo

with i fully faithful. Now, E ' L1 is the monoidal unit of LC, therefore it is a commutative
algebra in LC in a canonical way, and therefore (via i) it is a commutative algebra in C with unit
e : 1→ E.

Since

(4.5) E ' 1⊗ E e⊗id−−→ E⊗ E
µ−→ E6

is equivalent to the identity, the 2-out-of-3 property of weak equivalences gives that E being a
commutative algebra which is idempotent via its unit is equivalent to E being an idempotent
commutative algebra in C:

Definition 4.6. An idempotent (or solid7) commutative algebra in a symmetric monoidal ∞-
category C is an E ∈ CAlg(C) such that its multiplication map is an equivalence.

Proposition 4.7. The functor CAlgidem(C)→ C1/ taking an idempotent commutative algebra E to its
unit 1→ E is an equivalence onto the subcategory of idempotent objects of C.

Proof. We have just explained why it’s essentially surjective – for the full faithfulness, see
[Lur17, 4.8.2.9]. �

In particular: if we are given an object c ∈ C with a morphism 1→ c which exhibits it as an
idempotent object, then there exists an essentially unique (idempotent) commutative algebra
structure in c which has 1→ c as its unit.

4This is sloppy: an idempotent object should be the data of such a morphism [Lur17, 4.8.2.1/6]. But allow me to
be sloppy for the sake of conciseness. Also, note that this is equivalent to id⊗ e being an equivalence, as follows
from (4.5) and the other unit axiom.

5This is not saying that i is symmetric monoidal as it typically doesn’t preserve the monoidal unit.
6Here µ denotes the multiplication of E ∈ CAlg(C), which is simply L1⊗ L1 ' L1, since L1 is the monoidal unit

in CAlg(LC) and i preserves the monoidal product.
7This is the terminology of [BK72].
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Here’s one partial, but concise corollary of the above, which hides all idempotency consider-
ations:

Corollary 4.8. Let C be a symmetric monoidal ∞-category and E ∈ C. If E ⊗ − : C → C is a
localization onto its essential image, then E can be endowed with the structure of a commutative algebra
in C.

If we are a bit more careful, we also get a uniqueness result:

Corollary 4.9. Let C be a symmetric monoidal ∞-category and E ∈ C. Suppose L := E⊗− : C→ C

is a localization onto its essential image, with unit of the (L, i) adjunction given by e⊗ id : idC ⇒ Li
for some e : 1→ E. Then E has an essentially unique structure of a commutative algebra whose unit is
e.

The following is an enlightening reinterpretation of these localizations as extension – restric-
tion of scalars between ∞-categories of modules8, which gets us a universal property.

Proposition 4.10. Let (C,⊗, 1) be a symmetric monoidal ∞-category, E ∈ CAlg(C) an idempotent
commutative algebra, and L := E⊗− : C→ LC be the localization functor from Proposition 4.3. We
have the following vertical equivalence of adjunctions of ∞-categories

C LC

Mod1(C) ModE(C)

U ∼ ∼

E⊗−

E⊗−

resE
1

a
a

where U is the forgetful functor and res denotes restriction of scalars. These equivalences are moreover
symmetric monoidal, where ModE(C) has a symmetric monodial structure with monoidal product ⊗
and monoidal unit E. So CAlg(LC) ' CAlg(ModE(C)) = CAlgE(C).

In particular, if B ∈ CAlg(LC), then there is an essentially unique morphism E→ B of commutative
algebras in C. 9

4.2. Stable ∞-categories. Recall that an ∞-category is called stable if it is pointed (has a zero
object), has finite limits and colimits, and a commutative square is a pushout iff it is a pullback
[Lur17, 1.1.3.4].

Let PrL
St denote the full subcategory of PrL generated by the stable ∞-categories. Happily, if

an ∞-category is stable, then presentability is equivalent to an easier set of conditions [Lur17,
1.4.4.2].

There is a functor
Sp(−) : PrL → PrL

of (Ω-)spectra objects. One can define this functor in a very similar fashion to classical Ω-spectra,
which would be Sp(S) =: Sp, see [Lur09a, 8.4]. In Higher Algebra, Lurie dumped this definition
in favor of an equivalent, more abstract formulation, more in tune with the Goodwillie calculus
philosophy, see [Lur17, 1.4.2.8].10

8Note that we need to start with the knowledge that E has a commutative algebra structure, so that E-modules
make sense.

9This follows from E being initial in CAlgE(C), plus the fact that the forgetful functor CAlgE(C) → CAlg(C) is
fully faithful.

10That would be Exc∗(Sfin
∗ ,C), the ∞-category of reduced, excisive functors from pointed finite spaces to C. The

two approaches are equivalent by [Lur09a, 10.16]; see also 10.18 which suggests to think of a reduced, excisive
functor as a (space-valued) homology theory on finite spaces: taking its homotopy groups gets us closer to the
classical notion of an (abelian group-valued) homology theory.
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Now, Sp(C) is stable as soon as C has finite limits [Lur17, 1.4.2.17] and it is the universal
stable ∞-category associated to C [Lur17, 1.4.2.23]. With presentability hypotheses we have a
universal property that we shall be more interested in, so let’s phrase it. First, if C is presentable
then Sp(C) is presentable [Lur17, 1.4.4.4], and we have a functor Sp : PrL → PrL

St. Second, note
that we have a functor Σ∞

+ : C→ Sp(C) which assigns to an object its suspension spectrum. It
is the component at C of the unit of a localization adjunction:

Proposition 4.11. [Lur17, 1.4.4.5] Let C,D be presentable ∞-categories and suppose that D is stable.
The following functor is an equivalence of ∞-categories

FunL(Sp(C),D)
(Σ∞

+)
∗

∼
// FunL(C,D).

Thus [Lur, 6.2.4.5] the functor Sp(−) : PrL → PrL
St is a localization

PrL PrL
St

Sp(−)

a
with adjunction unit evaluated in C given by Σ∞

+ : C→ Sp(C).

The sphere spectrum S is the image of the one-point space by the functor Σ∞
+ : S→ Sp.

We shan’t use the following corollary, but we can’t refrain from mentioning it, as it gives a
universal property for Sp.

Corollary 4.12. The ∞-category Sp is the stable presentable ∞-category freely generated by a single
object. More precisely, if D is a presentable stable ∞-category, then the evaluation functor on the sphere
spectrum

FunL(Sp,D)
{S}∗

∼
// Fun(∗,D) ' D

is an equivalence of ∞-categories. Here {S} : ∗ → Sp is the constant functor at S.

Proof. We decompose {S}∗ as the composition of two equivalences,

FunL(Sp,D)
(Σ∞

+)
∗

∼
// FunL(S,D)

{∗}∗

∼
// Fun(∗,D) ' D

where the second equivalence is [Lur09b, 5.1.5.6] with S = ∗. �

5. THE SYMMETRIC MONOIDAL STRUCTURE ON PrL

Lurie [Lur17, 4.8] built a symmetric monoidal structure on PrL, analogous to the one possibly
first constructed by Kelly in the 1-categorical realm [Kel05, 6.5]. Let us paraphrase the summary
of results from [Gro20, 5.31]:

Proposition 5.1. The ∞-category PrL admits a closed symmetric monoidal structure such that the
following properties are satisfied:

(1) For C,C′ ∈ PrL, we have

FunL(C⊗ C′,D) ' FunL,L(C× C′,D)

for all D ∈ PrL, where FunL,L denotes functors preserving colimits separately in each variable.
(2) We have C⊗ C′ ' FunR(Cop,C′) where FunR denotes limit-preserving, accesible functors.11

(3) The ∞-category of spaces S is the monoidal unit.
(4) The internal hom is given by FunL(C,C′).

11This really uses the presentability hypothesis. Also, note that the adjoint functor theorem says that FunR is
given equivalently by right-adjoint functors.
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Most important is (1), which says that ⊗ behaves as (and in fact, generalizes) the tensor
product of modules over a commutative ring.

Since we have a symmetric monoidal ∞-category, we can wonder what are the commutative
algebras therein.

Proposition 5.2. The commutative algebras in the symmetric monoidal ∞-category (PrL,⊗, S) are
given by closed symmetric monoidal presentable ∞-categories. Morphisms of commutative algebras
correspond to (strong) symmetric monoidal functors.

The above shouldn’t be surprising if we know the 1-categorical analogue: symmetric monoi-
dal categories are equivalently the symmetric pseudomonoids in the 2-category of categories.
The closedness comes from considering left adjoint functors as the morphisms of PrL.

The following is a crucial step in our goal towards establishing the smash product:

Proposition 5.3. [Lur17, 4.8.1.23] The functors PrL → PrL given by Sp(−) and Sp⊗− are equiva-
lent, together with their unit natural transformations Σ∞

+ and Sp⊗ id.

Proof. By [Lur17, 1.4.2.25], the ∞-category Sp(C) is equivalent to the limit of ∞-categories12

· · · Ω
// C∗

Ω
// C∗

Ω
// C∗

where C∗ denotes the pointed objects in C. On the other hand, by [Lur09b, 4.8.1.21],

C∗ ' C⊗ S∗ ' FunR(Cop, S∗),

so we have

Sp(C) ' lim
n

C∗ ' lim
n

FunR(Cop, S∗) ' FunR(Cop, lim
n

S∗) ' FunR(Cop, Sp) ' C⊗ Sp. �

Since Sp(−) is a localization, then so is Sp⊗ −. The unit of the localization Sp(−) is Σ∞
+

(Proposition 4.11). By Remark 4.4, the idempotent object associated to this smashing localiza-
tion is therefore Sp via the functor (Σ∞

+)S : S→ Sp. Under the equivalence

FunL(S,D)
{∗}∗

∼
// Fun(∗,D) ' D

which already appeared in the proof of Corollary 4.12, this functor corresponds to Σ∞
+(∗) =

S ∈ Sp, the sphere spectrum.
We now apply Corollary 4.9 to get:

Corollary 5.4. The ∞-category of spectra Sp admits an essentially unique structure of a commutative
algebra in PrL with monoidal unit given by S.

In other words (using Proposition 5.2) the ∞-category Sp admits an essentially unique closed
symmetric monoidal structure with S as its monoidal unit: namely, the smash product. This
uniqueness statement proves that we recover the classical smash product. Indeed, if we take e.g.
EKMM spectra, they are a model category whose underlying ∞-category is equivalent to Sp,
and they have a closed symmetric monoidal model structure with unit the sphere spectrum, so
the underlying ∞-category gets a closed symmetric monoidal ∞-structure with unit the sphere
spectrum, whence from the above corollary we recover the structure we have just built.

Since we now know that Sp is an idempotent commutative algebra in PrL, we apply Propo-
sition 4.10:

12The inclusion of PrL in the ∞-category of ∞-categories preserves limits [Lur09b, 5.5.3.3], so we can take the
limit in whichever of these.
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Corollary 5.5. There is an equivalence of symmetric monoidal ∞-categories between (PrL
St,⊗, Sp) and

(ModSp(PrL),⊗, Sp). In particular, it induces an equivalence of ∞-categories of commutative algebras:

CAlg(PrL
St) ' CAlg(ModSp(PrL)) = CAlgSp(PrL).

As a consequence, if D ∈ CAlg(PrL
St), then there is an essentially unique morphism Sp → D in

CAlg(PrL).

In words: the ∞-category of stable presentable ∞-categories is equivalent to that of Sp-
modules in PrL, and the ∞-category of stable presentable closed symmetric monoidal ∞-
categories is equivalent to that of commutative Sp-algebras in PrL. The final statement is a
universal property for the smash product in Sp, and it says that if D is a presentable stable
closed symmetric monoidal ∞-category, then there is an essentially unique colimit-preserving,
symmetric monoidal functor Sp → D. In other words, Sp is initial among stable presentable
closed symmetric monoidal ∞-categories.
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