
Introduction to stable homotopy theory

Bruno Stonek

July 24, 2022

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, UL. ŚNIADECKICH 8,
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CHAPTER 1

Introduction

Let us start by giving a hand-wavy summary of the big lines this course will be following.

0.1. Some classical words about spectra and homology theories. One could say that sta-
ble homotopy theory started with the discovery by Freudenthal in 1937 of his “suspension
theorem”. One version of this theorem says that homotopy groups of spheres “stabilize”, in
the sense that the value of πn+k(Sn) becomes constant after a large enough n. This value is
called the k-th stable stem, or k-th stable homotopy group of spheres. Whereas (unstable) homotopy
groups of spheres are indexed by two integers, the stable stems only need one subindex. Only a
subset of the unstable groups are stable, but there are more techniques to compute them: those
of stable homotopy theory. Describing the homotopy groups of spheres is one of the big open
problems in algebraic topology.

One can pass from one sphere to the next-dimensional one by means of the suspension
functor Σ: indeed, ΣSn ∼= Sn+1. A more general version of the Freudenthal suspension theorem
says that, for nice enough spaces X, homotopy groups stabilize after suspending enough times:
these are its stable homotopy groups, πs

k(X).
More abstractly, there is a category of spectra Sp and a functor Σ∞ : Top∗ → Sp from the

category of pointed spaces, which assigns to each pointed space X its suspension spectrum, which
we for the moment think of as the sequence {X, ΣX, Σ2X, . . . }.

Spectra have homotopy groups (also negative ones). If a spectrum is of the form Σ∞X, then
its non-negative homotopy groups are precisely the stable homotopy groups of X. If X = S0,
then Σ∞S0 is called the sphere spectrum and is denoted S: its homotopy groups are the stable
stems.

Stable homotopy groups of spaces satisfy πs
k+1(ΣX) ∼= πs

k(X). Even more is true: stable
homotopy theory is an extraordinary homology theory, i.e. it satisfies all the Eilenberg-Steenrod
axioms of a classical homology theory in pointed spaces, except the so-called dimension axiom,
the one that says that the homology groups of S0 are trivial. Indeed, in this case they are far
from trivial!

An operation on pointed spaces is said to be stable if it is invariant under suspension, as
πs
∗ above. Thus, homology theories are stable by definition. Therefore, if we are interested in

the information a homology theory can give us of a given space X, in fact we can consider the
spectrum Σ∞X: more precisely, the homology functor from pointed spaces to graded abelian
groups factors via spectra.

Let us be more precise about what we mean by a “homology theory”. Remember that
the Eilenberg-Steenrod axioms characterize “classical homology”: up to natural isomorphism,
there is a unique sequence of functors from pointed spaces to abelian groups which satisfies the
axioms. Removing the dimension axiom lifts this uniqueness: there are many non-isomorphic
extraordinary homology theories on pointed spaces. They are useful in different ways. Some of
the most famous extraordinary cohomology theories are topological K-theory and cobordism.

These (extraordinary) homology theories are tightly related to spectra. Indeed, any spec-
trum gives rise to a homology theory, and conversely, any homology theory is represented by a
spectrum: this is called the Brown representability theorem.
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6 1. INTRODUCTION

0.2. The category of spectra. It is important to think not only of spectra but rather of the
category they form, because indeed one should be able to define maps of spectra. It was
understood early on that a “good category of spectra”, or, using an alternative name, the stable
homotopy category, should satisfy certain properties, for example, being triangulated. It took
some years to settle this. Spanier and Whitehead constructed one such category in 1953, but it
was then understood to be too small (it is now known as the Spanier-Whitehead category). Then
came some other constructions, and it was finally Michael Boardman, around 1965, who gave
the construction of a category widely accepted to be “the” stable homotopy category.

The struggle to set the foundations for stable homotopy theory on firm ground did not
end there. There are some complications arising from the fact that to consider spectra as a
1-category is reductive. The stable homotopy category should be understood as a homotopy
category, that is, the result of inverting weak equivalences in a category endowed with such a
special class of arrows.

One example of a construction which takes some work to formulate is homotopy limits and
colimits. The problem is already present unstably, in the category of spaces, so let us look at it
there for simplicity. In the homotopy category of spaces, there are finite products and arbitrary
coproducts, but that’s it for strict (co)limits: the functor from spaces to the homotopy category
does not create other (co)limits. What we would like is to make sense of homotopy (co)limits. For

example, the set underlying the pushout of B A
f

oo
g
// C is the pushout of the underlying

sets, which is the quotient of B t C under the relation f (a) = g(a). But in spaces we can do
something finer: instead of setting f (a) = g(a), we could add a path between f (a) and g(a).
The upshot is that this homotopy pushout will be homotopy invariant: two pushout diagrams
which are pointwise homotopy equivalent have equivalent homotopy colimits, which was not
necessarily true for classical colimits.

The problem is then that the homotopy category of spaces, the one were we have inverted
(weak) homotopy equivalences, is too coarse an object. We should not be turning weak equiva-
lences into isomorphisms. We should instead be keeping track of this information, since it may
be useful to build objects we are unable to build in the homotopy category, such as homotopy
colimits. One such tool are model categories, invented by Daniel Quillen in 1967. Another such
tool is ∞-categories, invented by Boardman and Vogt in 1973 but popularized by Joyal and Lurie
in the 21st century. We can make sense of homotopy colimits both in the model category of
spaces, and in the ∞-category of spaces.

The discussion above applies to spectra as well.

0.3. The smash product. In (good enough) pointed spaces, we have an additional piece of
structure, which is the smash product X ∧ Y. It is a symmetric monoidal product with unit S0,
the 0-sphere. Some elementary properties of it are that S1 ∧X ' ΣX, that the disjoint basepoint
functor (−)+ : (Top,×)→ (Top∗,∧) is symmetric monoidal, and that the smash product is left
adjoint to the basepoint-preserving function set (a “tensor-hom” adjunction). For example, the
Künneth theorem in pointed spaces is formulated in terms of the smash product.

Moreover, this construction behaves well homotopically: e.g. we can say that the model
category of spaces is a symmetric monoidal model category (there is a compatibility axiom between
both structures hidden in that italicized term), which implies that the functor from it to its
homotopy category is symmetric monoidal.

What about spectra? While it was quickly realized that defining a smash product of spectra
was important for many reasons, it was not easy to do it, and it was first done only at the level
of the homotopy category. John Adams’ 1974 classic, the “blue book”, made this construction,
but it is quite messy.
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Only in 1994 Elmendorf, Kriz, Mandell and May published a monograph where they con-
structed a symmetric monoidal model category of spectra (called S-modules) whose homotopy
category would recover Adams’ smash product. This was a much cleaner procedure. Then
other monoidal models for spectra came along: symmetric spectra, orthogonal spectra, or the
symmetric monoidal ∞-category of spectra, which used very different techniques to build the
smash product.

The smash product is very important to do brave new algebra (a term coined by Waldhausen
in the early 80s), also known as higher algebra: algebra with spectra.

0.4. The connection to algebra. Spectra rose out of algebraic topology, but they have con-
nections to algebra as well. Lars Hesselholt likes to explain how the sphere spectrum S is,
really, the most fundamental arithmetic gadget, more so than the integers. The integers Z are
a bastardization (decategorification) of S; more fundamentally, the natural numbers N are a
decategorification of the category of finite sets, where we just remember the cardinality; they
keyword here is the Barratt–Priddy–Quillen theorem, which we can paraphrase as follows: just
as Z is the group completion of the natural numbers, S is the group completion of the category
of finite sets and bijections, a categorification of N.

One idea here is that spectra are like a homotopical version of abelian groups. There is a
notion of topological abelian groups, but that notion is too strict: it does not catch everything
we would like to have. We want a notion of a space with a product, which is not associative and
commutative in the strict sense, but rather up to coherent homotopies: there is a path from (ab)c to
a(bc), but also there are paths between the five (ab)(cd), (a(b(cd)), (a(bc))d, ((ab)c)d, a((bc)d)
and this pentagon in X can be filled, etc, etc... It turns out, by a classical theorem of Boardman-
Vogt and May, that connective spectra (those with homotopy concentrated in non-negative
degrees) are equivalent to these “homotopical abelian groups”, sometimes called grouplike
E∞-spaces.

There is a fully faithful Eilenberg-Mac Lane functor H from abelian groups to spectra. With
regards to the intepretation above, this amounts to seeing a strictly associative and commutative
group as one which is only so up to coherent homotopy. It is also interesting to note that HA is
the spectrum that gives rise to the classical homology theory of spaces H∗(−; A).

Moreover, H : (Ab,⊗) → (Sp,∧) is a symmetric monoidal functor (once we have a suffi-
ciently high technology symmetric monoidal category of spectra!), so it preserves commutative
monoids, i.e. it takes rings to ring spectra. A ring spectrum is, by definition, a homotopy-
coherent commutative monoid in spectra. When we consider the ring spectrum HR, we are
considering the classical homology begotten by R, together with the cup-product.

Now, all this looks similar to a familiar story in algebra. We can consider another fully
faithful, symmetric monoidal embedding of abelian groups: namely, the functor that embeds
them as chain complexes concentrated in degree zero. Just as with chain complexes we do
homological algebra, with spectra we do homotopical algebra. But the latter is more general,
because we work “over the sphere spectrum” instead of over Z: indeed, while Z is the initial
ring, HZ is no longer the initial ring spectrum, but rather the sphere spectrum S is.

A ring spectrum would then be the analog of a differential graded algebra over Z. In
fact, we can say more. Just as we can talk of ring spectra, we can talk of module spectra over
them. There is a theorem that says that the category of HZ-module spectra is equivalent (in a
homotopical sense) to the category of (unbounded) chain complexes. Homological algebra is
therefore, in an abstract sense, included in homotopical algebra / stable homotopy theory.

0.5. The multifaceted character of spectra, and further reading. So how to think of a spec-
trum? As a “stabilized space”? Or perhaps as a homology theory! What about a “homotopical
abelian group”? Or a chain complex over a more fundamental arithmetic base?
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All of these approximations have some truth to them. Our job now is to try to turn these
intuitions into actual mathematical statements.

These notes will leave out many things. You should check out the sources cited in the
bibliography. Also, before we start, if you need more motivation, you should check out this
brilliant StackExchange post by Dylan Wilson. If you’re interested in the early history of the
subject, make sure to check [May99b].

0.6. Conventions. A “side remark” means a digressional remark that is intended as a
commentary to get you interested: an invitation to read further.

The symbol ∼= denotes isomorphism in a given category, e.g. bijection of sets or homeomor-
phism of spaces. The symbol' denotes homotopy equivalence or weak homotopy equivalence
(also known simply as weak equivalence).

When we say a space is “connected” we mean it is 0-connected, i.e. path-connected.

0.7. Acknowledgments. Many thanks to Cary Malkiewich for sharing a draft of his up-
coming stable homotopy book and for patiently answering my questions via email. Some
results in Sections 4.4, 4.5, 6.2 and Chapter 5 follow his book fairly closely.

https://math.stackexchange.com/a/416059/2614
https://math.stackexchange.com/a/416059/2614


CHAPTER 2

Stability phenomena in spaces

This is not a course in unstable homotopy theory, so we don’t want to dwell too much on
it, but there are still some things we should discuss. I want to emphasize above all some of the
features that will illuminate the behavior of the category of spectra: spectra behave better, but
in spaces we already have some traces of that good behavior, so it’s worth it to bring them forth,
especially as they are not theorems typically covered by algebraic topology courses, which I
assume you have taken.

The first section highlights some structural properties of the category of pointed spaces.
I have chosen to organize them according to categorical structures or properties: we will
highlight the closed symmetric monoidal structure, the self-enrichment, the pre-triangulated
structure. These words hide much information, and they categorize them in a way that is easier
to grasp and remember (at least for the categorical-minded).

The second section presents some of the theorems that show how spaces behave very nicely
once we start adding high connectivity hypotheses. By “passing to the limit”, in a sense, this
explains the corresponding theorems in the land of spectra, which satisfy the same conclusions
without needing any connectivity hypotheses.

Finally, let me warn you that this section is missing a lot of details (since, again, spaces are
not the main topic of this course). You should try to work them out by yourself, going to the
references as needed. Some of the details and proofs left out are easy, but some can be rather
hard.

1. The category of pointed spaces

1.1. What we really mean by space. The category of all topological spaces is not very well-
behaved. For example, it is not cartesian closed, i.e. the functors X ×− may not have right
adjoints, unless X is nice enough. In other words, the compact-open topology on the sets of
continuous functions is not categorically well-behaved in general. That is one reason why we
should restrict to a convenient category of spaces (the terminology is due to Steenrod); see e.g.
nLab:convenient category of topological spaces.

One such category is that of compactly generated weakly Hausdorff (CGWH) spaces. We
do not want to spend time dwelling on point-set topology, so we prefer to direct the reader to
Strickland’s notes [Str09], Rezk’s [Rez18] or Schwede’s [Sch, A.2]. This category is cartesian
closed, with function spaces YX. Every CW-complex is a CGWH space; every locally compact
Hausdorff space is CGWH.

There is a price to pay, of course. For example, limits and colimits of topological spaces are
created in the category of sets: the forgetful functor to sets has both left and right adjoints, given
by the discrete and the indiscrete topologies. The forgetful functor from CGWH spaces to sets
preserves limits, but does not preserve colimits. The forgetful functor from CGWH spaces to
all spaces does not preserve colimits nor limits, in general. However, many common (co)limits
are the same, see [Rez18, Section 10]. One added advantage of CGWH spaces is that they fix a
problem with products and CW-complexes: the product in the category of spaces of two CW
complexes may not admit a CW-structure, whereas when we take their product in the category
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of CGWH spaces, it does [Hat02, A.6].

Another possibility would be to dump topological spaces altogether1 and to work with
other models which are equivalent for the purposes of homotopy theory, e.g. simplicial sets
[Fri12], [GJ99], and where we don’t have to worry with point-set pathologies. But let us be
classical for now, and stick with CGWH spaces.

We let Top denote the category of CGWH spaces and continuous functions, and from now
on, “space” means “CGWH topological space”. We let Top∗ denote the category of pointed
spaces and pointed continuous maps, and we let Ho(Top∗) denote the homotopy category of
pointed spaces, with pointed spaces as objects and based homotopy classes of pointed maps as
morphisms. There is a functor Top∗ → Ho(Top∗), which is universal among the functors that
invert based homotopy equivalences, i.e. if Top∗ → C is a functor that sends based homotopy
equivalences to isomorphisms, then it factors through Ho(Top∗).

Much more could be said about Ho(Top∗), especially if we illuminate it with abstract
homotopy theory, e.g. model categories [Hov99], but we would rather not dwell on this too
much.2 A final remark: given a map between well-pointed spaces (see below for a definition),
it is a based homotopy equivalence iff it is a homotopy equivalence [May99a, Page 46].

Sometiems we will want to restrict to Ho(CW∗), the homotopy category of pointed CW-
complexes. By Whitehead’s theorem, a map of CW-complexes is a weak homotopy equivalence
if and only if it is a homotopy equivalence, so we might as well think of Ho(CW∗) as having
inverted the weak homotopy equivalences between pointed CW-complexes.

Let us now recall some facts about Top∗ and its homotopy category.

1.2. Limits and colimits.

Proposition 2.1. The forgetful functor U : Top∗ → Top has a left adjoint (−)+ : Top→ Top∗ which
adds a disjoint basepoint.

This immediately gives us information about limits in Top∗: they are created in Top under
the forgetful functor. Informally, this means that you can compute the limit in Top, and the
basepoint is the obvious one. For example, the product of pointed spaces is the product of
spaces, with basepoint given by the product of the basepoints.

Colimits are a bit more complicated, but they can also be described [Str11, Page 63]. Let
F : I → Top∗ be a diagram. After composing with the forgetful functor, we get UF : I → Top.
Let P : I → Top be the diagram with P(i) = ∗ for all i ∈ I. The inclusion of the basepoints
gives rise to a morphism of diagrams P→ UF. Let C be following pushout of spaces:

colimP //

��

colim(UF)

��

∗ // C

Proposition 2.2. The colimit of F is the space C together with the basepoint given by the arrow ∗ → C
in the diagram above.

1Didn’t Grothendieck say something like: “they were created by analysts and it shows”? Don’t quote me on
that one...

2There are different model structures on topological spaces, and they are all useful in one way or another, and
it’s important to compare them. The one we are implicitly considering in this chapter is the Hurewicz one, but there
is also a different Quillen model structure, and a “mixed” model structure, less known, introduced by Cole and
championed by May [MP12].
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So, if F is such that if you put ∗ everywhere and then you take the colimit then you get ∗,
then the colimit of F in spaces and pointed spaces coincide. This is true for countable sequences
and pushouts, but not for coproducts. Coproducts in pointed spaces are called wedge sums,
denoted X ∨Y: it is the pushout of spaces

∗ t ∗
(x0,y0)

//

��

X tY

��

∗ // X ∨Y.

Finally, note that spaces do not have a zero object, that is, an object which is both initial
and final: indeed, the initial space is the empty set, and the final space is the one-point space.
Pointed spaces form a pointed category, meaning they have a zero object: the one-point space is
also initial in pointed spaces.

Now, as for limits and colimits in Ho(Top∗): there aren’t many. The right notion is that of
homotopy (co)limit, we will say something about them below.

1.3. Closed symmetric monoidal structure and self-enrichment. For the theories of mo-
noidal categories and enriched categories, see [Kel05].

Definition 2.3. Let (X, x0), (Y, y0) ∈ Top∗.
(1) The function space F(X, Y) is the closed subspace of YX on the basepoint-preserving

maps. It is a pointed space with basepoint the constant pointed map.
(2) The smash product X ∧ Y is the quotient of X × Y by the copy of X ∨ Y given by X ×
{y0} ∪ {x0} ×Y.

Proposition 2.4. The category Top∗ is closed symmetric monoidal, with internal hom given by F(X, Y),
monoidal product given by X ∧Y and unit given by S0.

The functor (−)+ : Top→ Top∗ is symmetric monoidal, where Top is endowed with the cartesian
product.

This proposition packages a fair amount of information, for example that the smash product
operation is coherently associative up to isomorphism, or that we have natural bijections of
sets

(2.5) HomTop∗(X ∧Y, Z) ∼= HomTop∗(X, F(Y, Z)).

Note that if we had not restricted the category of spaces and we had worked with all topologi-
cal spaces, we would not have associativity of the smash product. See MO: Counterexample
for associativity of smash product. The fact that − ∧ Y has right adjoint F(Y,−) implies that
it commutes with colimits (e.g. with wedges). The monoidality of (−)+ says, essentially, that
X+ ∧Y+

∼= (X×Y)+.

There is an additional piece of information: Top∗ is enriched over itself, and for this enrich-
ment ∧ is the tensor and F(−,−) is the cotensor (see [Rie14, 3.7] for this terminology). There
is a fair amount of redundant information here, but something which is new in this statement
which is not there in the statement “closed symmetric monoidal category” is that the bijection
(2.5) can be promoted to a homeomorphism of based spaces

F(X ∧Y, Z) ∼= F(X, F(Y, Z)).

Finally, let us introduce the notation [X, Y] to be the set of based homotopy equivalences:
the hom in Ho(Top∗). Note that

π0F(X, Y) ∼= [S0, F(X, Y)] ∼= [X, Y],

https://mathoverflow.net/q/196084
https://mathoverflow.net/q/196084
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where π0 is the 0-th homotopy pointed set: the set of connected components, pointed at that of
the basepoint.

1.4. Suspensions and loops.

Definition 2.6. If X is a pointed space, we let CX = I ∧ X be the (reduced) cone of X; here
I = [0, 1] is the interval space, pointed at 1. We let ΣX = S1 ∧ X denote the (reduced) suspension
of X; here S1 = I/∂I pointed at 1.

Example 2.7. For all n ≥ 0, ΣSn ∼= Sn+1.

Now, dual to the above (under the smash–function space adjunction, or under Eckmann-
Hilton duality, if you will):

Definition 2.8. If X is a pointed space, we let PX = F(I, X) be the path space of X, and ΩX =

F(S1, X) be the loop space of X.

Remark 2.9. (1) You can describe ΣX as the pushout of appropriate maps CX ← X → CX,
and dually ΩX as the pullback of appropriate maps PX → X ← PX. Note that CX
and PX are contractible.

(2) ΣX is always path-connected.
(3) Reduced homology of suspensions is easy: it is sometimes even taken as an axiom

for homology in pointed spaces that H̃n+1(ΣX) ∼= H̃n(X). Dually3, homotopy of loop
spaces is easy: πn(ΩX) ∼= πn+1(X). But homotopy of suspensions is hard (think
homotopy of spheres!), and (co)homology of general loop spaces is also hard, though
see [Hat04, 5.5, 5.17] and [Nei10, 4.1.5, 5.1.3] for the (co)homology of loop spaces of
spheres.

As a particular case of the smash product–function space adjunction, we have the homeo-
morphism of pointed spaces

F(ΣX, Z) ∼= F(X, ΩZ)

and taking π0 gives a bijection of pointed sets

[ΣX, Z] ∼= [X, ΩZ].

Note that we have πnF(X, Y) ∼= [ΣnX, Y].
Now, the space ΩX has an important binary operation: concatenation of loops, i.e. if I have

two loops α, β, then I can run through α at twice the speed, then through β, getting β ? α. This
operation is not associative, but it is homotopy associative: there is a homotopy between the paths
(γ ? β) ? α and γ ? (β ? α). Similarly, I can run α in the other direction, getting α−1, but α−1 ? α is
only homotopical to the constant loop. This constant loop acts as a unit, up to homotopy. Note
that the operation is not commutative, not even up to homotopy.

There’s a name for a space with an operation which is homotopy associative, homotopy
unital and with homotopy inverses: an H-group. You can read more about them in [Ark11,
Chapter 2]. A proof that ΩZ is an H-group can be found in [Ark11, 2.3.2]. A more flexible
notion which is often encountered is that of an H-space: this is a pointed space (X, e) with a
multiplication X× X → X such that x 7→ µ(x, e) and x 7→ µ(e, x) are homotopic to the identity,
possibly via basepoint-preserving maps.

Side remark 2.10. The loop space ΩX is more than just an H-group. It’s a grouplike A∞-space.
To understand what this is about, here’s an elementary theorem in algebra that one does not
usually give much thought to. When we define a monoid (say), for associativity we only require
a(bc) = (ab)c. We do not require (ab)(cd) = (a(b(cd)) = (a(bc))d = ((ab)c)d = a((bc)d), or

3In the sense of “Eckmann-Hilton duality”.
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the equalities with a higher number of elements: these are automatic, says the theorem, which
is easily proven by induction.

When we go up in complexity and we define a monoidal category, we have to be more
careful: associativity is no longer strict, but up to natural isomorphism, and those natural
isomorphisms (associators) are part of the data that needs to be specified. We also need to require
the property that a so-called pentagon diagram, which specifies the above five-term equality,
commutes: it does no longer come for free. However, Mac Lane’s coherence theorem, which is
less trivial than the classical algebra theorem above, tells us that all the higher associativities
come for free, once we have this.

Now, in an A∞-space, nothing comes for free. We need to specify all the associativities! So,
saying that a space is an A∞-space is saying a lot. Well, at least a priori, because here’s another
interesting theorem. Consider topological monoids: these are monoid objects in Top, so, a space
with a strictly associative and unital multiplication. It is a very strict A∞-space, where all the
coherences can be taken to be equalities. But actually, it can be proven that any A∞-space is
weakly homotopy equivalent to a topological monoid! For example (but this is a universal
example, as we will point out below), there is a space of Moore loops of a space X, which is an
easy to describe topological monoid equivalent to ΩX; you can read about it in [Ada78, 2.2].4

This kind of result is called a “rectification result” and doesn’t hold in all contexts. For
example, we can also talk about E∞-spaces: these are also coherently homotopy commutative.5

But it is very much not true that every (nice enough) E∞-space is homotopy equivalent to a
topological commutative monoid.

Finally, another positive result: every A∞-space and such that π0 of it is a group (“group-
like”), is equivalent to a loop space. So loop spaces are the archetypical grouplike A∞-spaces.
This is one of May’s recognition theorems [May72].

If you want a leisurely read on A∞-spaces, you can check [Ada78, 2.2]. That book takes
the classical approach of Stasheff using associahedra. For a different, but equivalent, approach
using “little intervals”, see the introduction to Chapter 5 in [Lur17].

We will get some mileage out of knowing that ΩZ is an H-group.

Proposition 2.11. If Y is an H-group, then [X, Y] is a group for any X.
Even more: a space Y is an H-group if and only if [−, Y] : Ho(Top∗)

op → Set∗ factors through the
category of groups, and Y is a homotopy commutative H-group if and only if [−, Y] factors through the
category of abelian groups.

Here Set∗ denotes the category of pointed sets.

PROOF. The operation is defined pointwise, i.e. if m : Y×Y → Y is the multiplication of Y
and f , g : X → Y, we define f g to be the map

X ∆
// X× X

f×g
// Y×Y m

// Y.

The verifications are left to the reader; they are not hard, but can be found in [Ark11, 2.2.3]. �

In particular, π0 of an H-group is a group.
There is a dual story here: every suspension ΣX is a co-H-group. That would be analogous

to an H-group, only with all the arrows reversed: there is not a multiplcation but rather a
comultiplication ΣX → ΣX ∨ ΣX which “pinchs ΣX in the middle” (make a drawing!). A
proposition dual to the above also holds [Ark11, 2.2.9]:

4A caveat is that the Moore loops are not a topological group, i.e. the inverses are only up to homotopy. But
there are other models, a bit less explicit, as topological groups, see this MathOverflow answer.

5The “E” comes from “everything”.

https://mathoverflow.net/a/51812/6249
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Proposition 2.12. If A is a co-H-group, then [A, Y] is a group for any A.
Even more: a space A is a co-H-group if and only if [A,−] : Ho(Top∗) → Set∗ factors through

the category of groups, and A is a homotopy cocommutative co-H-group if and only if [A,−] factors
through the category of abelian groups.

Given that we have a bijection of pointed sets [ΣX, Z] ∼= [X, ΩZ] and that both sides are
groups, we would expect that isomorphism to be promoted to one of groups, and that is true
[Ark11, 2.35]:

Proposition 2.13. The bijection of pointed sets [ΣX, Z] ∼= [X, ΩZ] is an isomorphism of groups.

This gives a description of the group structure in the homotopy groups πn, n ≥ 1 of a based
space, since πn(X) = [ΣnS0, X] ∼= [S0, ΩnX]: we can see it as coming from the co-H-group
structure on S1, or as coming from the H-group structure on loop spaces.

We can go further:

Proposition 2.14. If A is a co-H-group and Y is an H-group, so that [A, Z] has two group operations,
then these two operations are the same, and [A, Z] is abelian.

PROOF. You can prove it like this: prove that one operation is a morphism for the other,
i.e. if µ and m are the two multiplications and G is the group, you prove that µ : G× G → G
is a morphism, where G = (G, m) and G× G has the product group structure. This amounts
to an equation called the interchange law, or exchange law. Then you play around a bit and get
the result, see [Ark11, 2.2.12], which is valid for any group G and is called the Eckmann-Hilton
argument. �

As a corollary, πn(X), n ≥ 2 is an abelian group, e.g. π2 is of the form [ΣS0, ΩX], and
similarly for higher n. Also, ΣnX (resp. ΩnZ) is homotopy cocommutative (resp. homotopy
commutative) as soon as n ≥ 2.

To finish, note that Σ and Ω are functorial. You can see them as functors Top∗ → Top∗;
you can prove they preserve homotopy equivalences, so they descend to functors Ho(Top∗)→
Ho(Top∗). You can also see Ω as a functor to H-groups, i.e. a loop map is a morphism of
H-groups (defined in the obvious way); similarly for suspensions. The functors (Σ, Ω) form an
adjoint pair.

1.5. (Co)fiber sequences, some homotopy (co)limits. If f : X → Y is a map of spaces, its
fiber over y0 ∈ Y is the space f−1(y0), and its cofiber is the space Y/ f (X). In other words, the
fiber is the pullback of X → Y ← ∗, and the cofiber is the pushout of ∗ ← X → Y. The problem
with these notions, from a homotopical point of view, is that they are not homotopy invariant:
consider the map S1 → R given by seeing S1 ⊆ R2 and projecting onto the x-axis, and consider
the map S1 → ∗, then compare the fibers. In other words, if you consider a square where
the vertical maps are homotopy equivalences, then the induced map on fibers need not be a
homotopy equivalence.

However, if f is a (Hurewicz) fibration, then the fibers are preserved by homotopy equiv-
alences; if f is a (Hurewicz) cofibration, then the cofibers are preserved by homotopy equiv-
alences. But you know that every map can be replaced by a fibration or a cofibration; more
precisely, every map X → Y can be factored as a homotopy equivalence followed by a fibra-
tion: X ∼−→ P f → Y (P f is the mapping path space), or as a cofibration followed by a homotopy
equivalence: X → M f ∼−→ Y (M f is the mapping cylinder), see e.g. [May99a, Chapters 5 and 6]
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or [MV15, Chapter 2]. 6 The mapping cylinder can be defined as the pushout X× I ← X → Y,
and dually, the mapping path space can be defined as the pullback of Y I → Y ← X.

We then define the homotopy fiber of f over y0 to be the fiber of P f → Y, and the homotopy
cofiber of f to be the cofiber of X → M f . These are homotopy-invariant, and are also called
mapping cocone and mapping cone respectively. They are examples of homotopy limits and
homotopy colimits: of X → Y ← ∗ and of ∗ ← X → Y respectively.

An equivalent description of the homotopy cofiber of f : X → Y is as the pushout of
CX ← X → Y, i.e. you replace X → ∗ by X → CX and only then take the pushout. You get a

sequence of maps X
f−→ Y → C f , where C f is the homotopy cofiber of f . Dually, you can do

this for homotopy fibers. Explicitly, the homotopy fiber of f : X → Y looks like

{(x, γ) : x ∈ X, γ : I → Y, γ(0) = y0, γ(1) = f (x)},
i.e. γ is a path in Y witnessing that x lies in the fiber up to homotopy.

Now, a (homotopy) cofiber sequence is a sequence X → Y → C together with a homotopy
equivalence C f → C making the obvious triangle commute. This is a bit more general than a

mere sequence of the form X
f−→ Y → C f , and the added generality is sometimes useful.

We have to mention a subtlety related to basepoints.7 To define the homotopy fiber of a
map f : X → Y, you need a basepoint in Y. The homotopy fiber of a based map f : X → Y
has, then, the same definition as its unbased counterpart. On the other hand, when defining
the homotopy cofiber of a map f : X → Y, you do not need any basepoints. If you start with
a based map f : X → Y, then in the pushout of CX ← X → Y we can take CX to mean
the reduced cone, or the unreduced cone. The pushouts are then different, but homotopy
equivalent... at least if X is well-pointed:

Definition 2.15. A pointed space is well-pointed if the inclusion of the basepoint is a Hurewicz
cofibration. More explicitly, X× {0} ∪ {x0} × I is a retract of X× I.

I admit that I may be sloppy when it comes to the well-pointed hypothesis; if you find any
mistakes, let me know. Perhaps I can be excused by the fact that any pointed space is homotopy
equivalent to a well-pointed one.8

Proposition 2.16. If X is a well-pointed space, then the cone and the reduced cone of X are homotopy
equivalent; also the mapping cylinder and the reduced mapping cylinder (defined by the same pushout,
but in pointed spaces); and also the homotopy cofiber and the reduced homotopy cofiber.

For the sake of brevity, if f is a map of based spaces and we say “homotopy cofiber”, then
we actually have in mind the reduced one.

Homotopy (co)limits of diagrams can be defined for spaces [Dug08], [Str11, Chapter 6],
[MV15, Chapter 8] or for more general homotopy theories [Rie14, Chapters 5 & 6], [Hir03,
Chapters 18 & 19].

6More technologically, Hurewicz fibrations and cofibrations are part of a model structure on spaces, see [MP12,
17.1.1], and [MP12, 17.1.2] for the pointed counterpart, though note the subtleties in Remark 17.1.3...

7One could say that the core asymmetry is the fact that HomTop(X, ∗) has exactly one element, so I don’t need
to specify such a map, whereas HomTop(∗, X) is a set isomorphic to the underlying set of X, so if I need such a map,
I have to specify it. In other words, ∗ is initial but not final.

8See [MP12, 17.1.3]: well-pointed spaces are the cofibrant spaces in a certain (Hurewicz) model structure in
Top∗ where the weak equivalences are taken to be the homotopy equivalences, so we are talking about a cofibrant
replacement functor. Explicitly, consider the space X ∨ I which “adds a whisker”: it is well-pointed, and the map
X ∨ I → X which “shaves the whisker” is a homotopy equivalence.
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We do not want to go into details, but we can say that homotopy colimits can be computed
following the same philosophy as homotopy cofibers above, namely: given any diagram (above:
∗ ← X → Y), first replace it by one which is pointwise homotopy equivalent to it but cofibrant,
and then take the usual colimit of that one.

To give a more fuzzy intuition: while in a strict colimit we impose equality relations, in
a homotopy colimit we replace x = y by a path from x to y. Look at the cofiber of a map
f : X → Y: we may identify it with the quotient Y/ f (X), i.e. we impose the relations f (x) = ∗
inside Y. In the homotopy cofiber, on the other hand, we build a new space where all the points
f (x) are connected to a single point via paths. A picture can be seen in [MV15, Figure 2.4].

For another example, the homotopy pushout of Z ← X → Y is given by the double mapping
cylinder [Str11, 6.5.1]. There are some tricks that make homotopy pushouts easier to recognize,
e.g. if one of the arrows is a cofibration, then the pushout computes the homotopy pushout
[Str11, 6.4.9]. Finally, we remark that the suspension ΣX can be described as the homotopy
pushout of ∗ ← X → ∗: here, the arrows X → ∗ get replaced by the cofibrations X → CX.

Sequential colimits. There is an example that we are going to need, that is the one given by
sequences X1 → X2 → X3 → · · · .

The following is an exercise from the exercise sheets. It is important enough to deserve
appearing here, because we will make use of it in the future.

Let U denote the category of all topological spaces. Let X0
f0
// X1

f1
// X2 // · · · be

a sequential diagram in U , and let X be its colimit. Let K ∈ U .

i. Describe the natural map

ψ : colimiHomU (K, Xi)→ HomU (K, X)

and prove it is injective if the fi are inclusions. Note that it is surjective if and only if every
map K → X factors through one of the Xi.

ii. Say that g : A→ B in U is a closed T1 inclusion if:
• It is a closed inclusion, i.e. g(A) ⊆ B is closed and g : A→ g(A) is a homeomorphism.
• For every x ∈ B \ g(A), the set {x} ⊆ B is closed.9

Prove that if the fi are closed T1 inclusions and K is compact, then ψ is a bijection. In
other words, HomU (K,−) preserves sequential colimits of closed T1 inclusions when K is
compact. More is true: prove that colimiC(K, Xi)→ C(K, X) is a homeomorphism.

iii. In the above hypotheses, deduce that if the Xi, the fi and K are pointed, then colimi[K, Xi]→
[K, X] is a bijection. In particular, the natural map

colimiπk(Xi)→ πk(X)

is a bijection for all k ≥ 0 (so, a group isomorphism for k ≥ 1).
iv. Every Hurewicz cofibration between (weak) Hausdorff spaces is a closed T1 inclusion.

Therefore, in Top∗, homotopy groups commute with sequential colimits of (unbased)
Hurewicz cofibrations.

v. Let us now work in Top. Instead of taking the ordinary colimit colimiXi, which requires
some point-set hypotheses for it to commute with homotopy groups, we can take its map-
ping telescope. Define it to be X∞, the sequential colimit of the following mapping cylinders

9This is automatic if B is T1.
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(you should make a drawing):

M f0 M( f1 ◦ r0) M( f2 ◦ r1) . . . X∞

X0 X1 X2 X3 . . . X
f0 f1 f2

r0 r1

i0 i1

r2

You could prove that:
• If you have a map of sequential diagrams in Top, i.e. a ladder diagram, in which all the

vertical maps are weak equivalences, then the induced map on mapping telescopes is
a weak equivalence. This justifies calling X∞ the (sequential) homotopy colimit of the
diagram.
• The canonical map X∞ → X is a weak equivalence when the fi are cofibrations.
• Homotopy groups commute with sequential homotopy colimits, as do ordinary ho-

mology groups.
• If X is a CW-complex, then X is the homotopy colimit of its skeleta.

Pushouts. Let D be the diagram Z
g←− X

f−→ Y in Top. We can also take it in Top∗, in which
case all spaces should be well-pointed, and the cones, cylinders etc. should be reduced.

• The homotopy pushout of D is the double mapping cylinder of f and g, that is, the (strict)
pushout

X M f

Mg hocolim(D).

y

What we did was replace the arrows f and g by the equivalent up to homotopy X →
M f and Y → Mg which have the advantage of being cofibrations.

• We don’t actually need to replace both maps by cofibrations, you can prove that you
can replace just one of the two and leave the other one intact, getting a homeomorphic

space. For example: the homotopy pushout of ∗ ← X
f−→ Y is, by definition, the

pushout of CX ← X
f−→ Y, but it is homeomorphic to the pushout of ∗ ← X → M f ,

which is, by definition, the homotopy cofiber of f .
• Note that the diagram

X Y

Z hocolim(D).

is homotopy commutative (make a drawing!). By collapsing the cylinder to a point, we
get a comparison map s : hocolim(D)→ colim(D), and a diagram

X Y

hocolim(D)

Z colim(D)

f

g

s

where the upper left part homotopy commutes, the two triangles strictly commute, and
the square strictly commutes. More generally, if you start with an outer square as above
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which in the bottom right corner has a space P and this square is homotopy commuta-
tive, then a choice of a homotopy defines you a comparison map s : hocolim(D)→ P
that makes the two triangles homotopy commute. This motivates the following point.
• A square

X Y

Z P

f

g

is homotopy cocartesian (or a homotopy pushout, note the indefinite article!) if it is
homotopy commutative, and there exists a homotopy such that the induced map
s : hocolim(D)→ P is a weak homotopy equivalence.10

• It is useful to know when the comparison map s : hocolim(D)→ colim(D) is a weak
homotopy equivalence. It is enough for one of f or g to be a cofibration (and in this
case, the resulting map is moreover an actual homotopy equivalence). This is nice,
because it means we don’t need to add any of those extra cylinders, we can take the
ordinary colimit and “it computes the homotopy colimit”, as people say.
• Similarly, homotopy invariance holds for ordinary colimits as soon as one of the maps

is a cofibration. In other words, if

Z X Y

Z′ X′ Y′

fg

∼

g′ f ′

∼ ∼

is a commutative diagram where the vertical arrows are weak homotopy equivalences
and one of the arrows in each row is a cofibration, then the induced map of pushouts
is a weak homotopy equivalence. Without any cofibration hypotheses, the induced
map of homotopy pushouts will be a weak homotopy equivalence.
• Two important examples: the homotopy pushout of ∗ ← X → ∗ is ΣX in Top∗ and is

the unreduced suspension SX in Top. For a pointed space X, the homotopy pullback
of ∗ → X ← ∗ is ΩX.

1.6. The pre-triangulated structure of Ho(Top∗). The homotopy category of pointed spaces
is not an abelian category: it is not even additive, as there need not be an abelian group opera-
tion on homsets. It is also not triangulated, if you know what that means (e.g. derived categories
of abelian categories are triangulated). But it does admit a pre-triangulation: something defi-
nitely weaker. The homotopy category of spectra, in turn, will be triangulated. We shall not
define the notion of pre-triangulation as it is a bit involved11, but we are going to mention some
of its more salient features for the case of pointed spaces.

A pre-triangulated category is, in particular, endowed with classes of cofiber sequences and
fiber sequences. We have already defined these. They satisfy some elementary properties, such

as ∗ → X id−→ X is a cofiber sequence, or X id−→ X → ∗ is a fiber sequence. Also, every map is
part of a cofiber sequence and of a fiber sequence. Let us focus on cofiber sequences, but know
that everything which will now be said can be dualized.

10Some authors may deem it wiser to include such a homotopy as part of the definition.
11Beware, there are at least two non-equivalent definitions of this! One of them is given in Neeman’s book on

triangulated categories, and it assumes that the category is additive. A non-additive definition is given in [Hov99,
6.5]: that’s the one we have in mind.
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The (strict) cofiber of a map : A → B, let it be B → E, satisfies by definition that the
composition A → B → E is equal to a constant map. The homotopy cofiber of a map f :
X → Y, denoted i : Y → C, on the other hand, satisfies that the composition X → Y → C is
nullhomotopic and Y → C is universal with respect to this property. More precisely, the functor
[−, Z] takes X → Y → C to an exact sequence of pointed sets12

(2.17) [C, Z] i∗
// [Y, Z]

f ∗
// [X, Z].

More is true: if Y → D is a map, then nullhomotopies of X → Y → D are in 1-1 correspondence

with maps h : C → D such that Y i
// C h

// D is equal to g. Moreover, if Z happened to
be a (homotopy-commutative) H-group, then this is an exact sequence of (abelian) groups.

Cofiber sequences can be continued to the right:

Proposition 2.18. Let X
f−→ Y i−→ C f be a cofiber sequence of pointed spaces. Then there is an arrow (a

connecting map) C f → ΣX such that Y → C f → ΣX is a cofiber sequence.

PROOF. You can prove this by inspection, just using the definition of the homotopy co-
fiber and of suspension. Or you can be categorical and use the pasting lemma for homotopy
pushouts [Str11, 7.23], then it follows from:

X
f
//

��

Y //

i
��

∗

��

∗ // C f // Ci

�

We want to continue taking homotopy cofibers, and identify not only the spaces but also
the maps. So we need to notice that the following diagram commutes up to homotopy:

ΣX
−Σ f

// ΣY

Ci

∼
OO ==

See [May99a, 8.4] or [MV15, 2.4.1.9], where the mysterious negative signs are given a geometric
interpretation. See also MO: Do the signs in Puppe sequences matter?.

So if we take iterated homotopy cofibers of a based map X → Y and we incorporate the
equivalences mentioned just above, we get a sequence called the Puppe sequence, or Barratt-
Puppe sequence:

(2.19) X
f
// Y i

// C f
q
// ΣX

−Σ f
//// ΣY

−Σi
// ΣC f

−Σq
// Σ2X

Σ2 f
// · · ·

in which any two consecutive maps form a cofiber sequence. As a corollary of the result around
(2.17), we get that if Z is a pointed space, then there is an exact sequence of pointed sets

· · ·
(−Σ f )∗

// [ΣX, Z]
q∗
// [C f , Z] i∗

// [Y, Z]
f ∗
// [X, Z].

Note how, on the left, we eventually start mapping from suspensions and iterated suspensions:
these pointed sets become groups and abelian groups, then, and this becomes an honest exact
sequence of (abelian) groups. This is often summarized by saying that (2.19) is a (homotopy)

12A
f−→ B

g−→ C is an exact sequence of pointed sets if {b ∈ B : g(b) = c0} = {b ∈ B : ∃a ∈ A b = f (a)}.

https://mathoverflow.net/questions/5901/do-the-signs-in-puppe-sequences-matter
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coxact sequence of based spaces.

You will prove in an exercise that these exact sequences encompass the long exact sequences
in cohomology groups for a cofiber sequence, and the long exact sequence in homotopy groups
for a fiber sequence. What about the long exact sequence in homology? It’s a bit more compli-
cated, but we can also get it.

2. Some fundamental theorems

Let us see some examples of stable phenomena. These are statements that have connectivity
hypotheses and conclusions, but which become clean statements once we pass to spectra.

2.1. Freudenthal’s suspension theorem and stable homotopy groups.

Definition 2.20. Let n ≥ 0. A space X is n-connected if πi(X) = 0 for 0 ≤ i ≤ n. A (−1)-
connected space is a non-empty space. A map f : X → Y of spaces is n-connected if it is an
isomorphism in πi, 0 ≤ i ≤ n− 1, and an epimorphism in πn.

Therefore, the more connected a map is, the closer it is to being a weak equivalence which
would be an ∞-connected map. Observe that X is n-connected iff ∗ → X is n-connected iff
X → ∗ is (n + 1)-connected, and X → Y is n-connected iff its homotopy fibers are (n − 1)-
connected.

Note that Σ induces a map πk(X) → πk+1(ΣX) which is a group morphism as soon as
k ≥ 1.

Theorem 2.21 (Freudenthal, 1937). Let X be an n-connected pointed space, n ≥ 0. Then the suspen-
sion map

Σ : πk(X)→ πk+1(ΣX)

is an isomorphism for 0 ≤ k ≤ 2n and an epimorphism for k = 2n + 1.
Another phrasing: the unit of the (Σ, Ω) adjunction, i.e. the map X → ΩΣX, is (2n+ 1)-connected

as soon as X is n-connected.
A more general version: If X is a pointed CW-complex and Y is a well-pointed, n-connected space,

then
Σ : [X, Y]→ [ΣX, ΣY]

is an isomorphism if dim(X) ≤ 2n, and surjective if dim(X) = 2n + 1.13

Another phrasing (which is also more precise): the map Σ : F(X, Y) → F(ΣX, ΣY) is (2n− t)-
connected, where t = dim(Y).

PROOF. The direct proofs are involved; we would rather not go into one here. See e.g.
[Nei10, 4.2.4], or [Koc96, 3.2.2], or [Swi75, 6.26, 15.46], or [tD08, 6.4.6], or [Hat02, 4.24], or
[May99a, 11.2]... The choices are endless! For the more general version, see e.g. [tD08, 8.4.8] or
[Ark11, 5.6.6]. �

Remark 2.22. You can shift a chain complex A to either side by an integer, getting a chain
complex A[k] for any k ∈ Z. It satisfies that Hi+k(A) ∼= Hi(A[k]). Similarly, if X is a pointed
space, we have

πk(X) ∼=
{

πi(ΩkX) if k ≥ 0

πi(Σ−kX) if k ≤ 0 with restrictions on connectivity.

In spectra, these restrictions will be lifted.

13Here dim refers to the dimension of a CW-complex, i.e. the largest dimension of a cell.
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Corollary 2.23. (1) If X is n-connected, then ΣX is (n + 1)-connected. So for any X, ΣnX is at
least (n− 1)-connected.

(2) If X is a finite-dimensional CW-complex, the sequence

[X, Y] Σ
// [ΣX, ΣY] Σ

// [Σ2X, Σ2Y] Σ
// · · ·

eventually stabilizes. In particular, for k ≥ 0, the sequence

πk(X)
Σ
// πk+1(ΣX)

Σ
// πk+1(Σ2X) // · · ·

eventually stabilizes.

Definition 2.24. Let X, Y be pointed spaces.
(1) If X is a finite-dimensional CW-complex, then the colimit of the first sequence above is

denoted {X, Y} and is called the abelian group of stable homotopy classes of maps from
X to Y. By the corollary above, it is [ΣnX, ΣnY] for n sufficiently large.

(2) For k ≥ 0, the k-th stable homotopy group of X is the abelian group given as the colimit

πs
k(X) := colimnπk+n(ΣnX)

of the second tower above. By the corollary above, it is πk+n(ΣnX) for n sufficiently
large. The stable homotopy groups of spheres πs

k(S
0) are called the stable stems.

The πs
k extend to functors Top∗ → Ab which send based homotopy equivalences to isomor-

phisms, so they descend to functors Ho(Top∗) → Ab. We will later prove that they define an
extraordinary homology theory. In particular, they will have long exact sequences for cofibra-
tion sequences, something that we do not have for unstable homotopy groups, and which adds
substance to the claim that stable homotopy groups are more computable than their unstable
counterparts. As for {X, Y}, there is the Adams spectral sequence.

As another remark made to entice you: the group {X, Y} will be the hom between the
spectra corresponding to X and Y, under some mild conditions.

Now, for a more computational remark. See Figure 1 for a table made by Aaron Mazel-
Gee showing the first stable stems. You should read it horizontal line by horizontal line. At
the end of the first line you see the stable 0-stem, which is Z, then the stable 1-stem, which
is Z/2, etc. It takes work and different techniques to do all those computations. There is a
very classical one which you should know: π3(S2) ∼= Z{η}, where η : S3 → S2 is the Hopf
map (1931). Mathematicians were surprised when there turned out to be an essential map (i.e.
not homotopically trivial) from a higher-dimensional sphere to a lower one; compare to the
behavior in classical homology.

The next one, π4(S3) is due to Serre, and is generated by the suspension of η, only it is
2-torsion (which was also surprising!). Note that Freudenthal predicts that π3(S2) → π4(S3)

is a surjection but not an isomorphism, and this is tight: indeed that map is isomorphic to the
quotient map Z→ Z/2. See e.g. [Hat04, 5.1] for many computations of homotopy groups of
spheres with the Serre spectral sequence.

Finally, let us give a construction that will be important in the next chapter.

Definition 2.25. Let X be a based space. Define QX to be the following colimit of based spaces:

QX := colim( X // ΩΣX // Ω2Σ2X // · · · )

where the map ΩnΣnX → Ωn+1Σn+1X is given by ΩnηΣnX, where ηY : Y → ΩΣY is the unit of
the (Σ, Ω) adjunction. Note that these maps Y → ΩΣY as well as their iterated loops are all
closed inclusions.

The space QX “stabilizes” X, in the following sense:

https://etale.site/writing/an-introduction-to-spectra.pdf
https://etale.site/writing/an-introduction-to-spectra.pdf
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FIGURE 1. The first stable stems

Proposition 2.26. Let X be a pointed space. Then π∗(QX) ∼= πs
∗(X).

PROOF. Fix k ≥ 0. Suppose we know that πk commutes with the colimit defining QX. The
result follows after using πk(ΩrΣrX) ∼= πk+r(ΣrX), and after checking that the arrows in the
resulting sequence are really the arrows in the definition of πs

k(X).
So we need to prove that πk commutes with that colimit. We have worked this out in

Section 1.5: since the colimit defining QX is given by closed inclusions, then πk commutes with
it. �

2.2. The Blakers–Massey theorem. Some of the proofs of Freudenthal’s suspension theo-
rem cited above deduce it from a more general theorem called the Blakers–Massey theorem, or
homotopy excision theorem, see e.g. [May99a, 11.1], or [Hat02, 4.23], or [tD08, 6.4.1]... If you
look at those sources, you’ll see Blakers–Massey formulated as a theorem that looks like the
excision theorem for homology, only for relative homotopy groups, and only in a certain range
depending on connectivity.

However, there is a more homotopical formulation that I find very appealing; I’m not sure
who it is originally due to, but there is an exposition and a proof of it in [Rez15, 3.1]. See also
these notes by Schwede, or [MV15, Chapter 4]. It goes like this:

Theorem 2.27 (Blakers–Massey, homotopical formulation). Consider the following homotopy push-
out square:

Q
g
//

f
��

Y

��

X // P.

Let R = X×h
P Y be the homotopy pullback. If f is m-connected and g is n-connected, then the canonical

map Q→ R is (m + n− 1)-connected.14

There is also a dual version.

One can deduce the more classical statement for it, which takes a form that justifies calling
it “homotopy excision theorem”.

Corollary 2.28 (Classical Blakers–Massey, homotopical excision). . If X = A ∪ B is the union of
two open subspaces such that A, B and A ∩ B are connected, then if (A, A ∩ B) is k1-connected and
(B, A ∩ B) is k2-connected, for k1, k2 ≥ 1, then

πi(A, A ∩ B)→ πi(X, B)

14Beware of Rezk’s definition of n-connectedness: it is different by an offset of 1 from the classical one we have
given here, [Rez15, 1.6].

http://www.math.uni-bonn.de/~schwede/Blakers-Massey.pdf
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is an isomorphism for 1 ≤ i ≤ k1 + k2 − 1 and an epimorphism for i = k1 + k2. Here a pair (X, A) is
k-connected if πi(X, A, x0) is 0 for 1 ≤ i ≤ k and all x0, and π0(A)→ π0(X) is surjective.

Just as Freudenthal tells you how far is X → ΩΣX is from being an equivalence, relative to
the connectivity of X, Blakers–Massey tells you more generally how far is a homotopy pushout
square from also being a homotopy pullback square, in terms of the connectedness of the
maps. More generally indeed, since Ω is a homotopy pullback, and Σ is a homotopy pushout.
In spectra, we will have that homotopy pullback squares are also homotopy pushouts. You
should start seeing a pattern here: these useful results about pointed spaces which are true only
on a certain connectivity range, became true without assumptions in spectra.

Let’s point out some particular cases of this theorem which are worthy of notice. The first
one answers the question: how far is a cofiber sequence from being a fiber sequence, as well?
In other words: if I have a map X → Y, how far is X from being equivalent to the homotopy
fiber of the homotopy cofiber of it?

Corollary 2.29. Let Q
g−→ Y c−→ P be a cofiber sequence. Suppose that Q is m-connected and g is

n-connected. Then if F is the homotopy fiber of c, the canonical map Q→ F is (n + m)-connected.

In spectra, we will have that cofiber sequences and fiber sequences agree, without condi-
tions on connectivity.

Using that the homotopy pushout of X ← X ∨Y → Y is a point when X, Y are well-pointed
(which is an exercise), we get:

Corollary 2.30. Let X, Y be well-pointed spaces, and suppose X is p-connected and Y is q-connected.
Then the canonical map X ∨Y → X×Y is (p + q + 1)-connected.

In spectra, we will have that finite coproducts and products agree, without conditions on
connectivity.

Remark 2.31. A map is a 1-cube, a square of maps is a 2-cube, and you can imagine what is an
n-cube for n ≥ 2. Blakers-Massey concerns 2-cubes; its particular case Corollary 2.30 concerns
1-cubes; and there is a generalization to n-cubes, see e.g. [MV15, Chapters 5 & 6].

Remark 2.32. The Hurewicz theorem can also be deduced from Blakers-Massey, see [MV15,
4.3.2].





CHAPTER 3

Getting started with spectra

1. Cohomology theories, I

Recall the classical result that says that ordinary cohomology groups with coefficients in
an abelian group G can be represented by an Eilenberg-Mac Lane space. More precisely, the
functor H̃n(−; G) : Ho(CW∗)→ Ab, which you can construct e.g. using free abelian groups on
singular chains, is representable: there exists a pointed CW-complex K(G, n) such that [Hat02,
4.57]

H̃n(−; G) ∼= [−, K(G, n)].

Moreover, this space has a very special homotopy type: its only non-zero homotopy group is
G in degree n, but this is not the main aspect that will interest us now.

Side remark 3.1. Following up on Side remark 2.10: by Proposition 2.11, we see that K(G, n)
is a homotopy commutative H-group. So we are led to wonder: is it perhaps a (grouplike)
E∞-space? Actually, even more: it is a topological abelian group! In the previous side remark
we said it is not true that every grouplike E∞-space is equivalent to a topological abelian group.
In fact, up to homotopy, products of K(G, n) are the only ones: if you are a topological abelian
group, then you are weakly equivalent to a product of K(G, n). This is essentially [Hat02, 4K.7].
For a construction of the K(G, n) as topological abelian groups, you can do the iterated bar
construction, see [Mil67, 4.1], [KT06, 5.86].

What are the properties of H̃n that make the above representability theorem true?

Theorem 3.2 (Brown representability, I). Let F be a contravariant functor from the homotopy category
of pointed connected1 CW-complexes to the category of pointed sets which takes coproducts to products
(wedge axiom or (Milnor’s) additivity axiom) and homotopy pushouts to weak pullbacks2 (Mayer–
Vietoris axiom)3. Then F is representable.

PROOF. See [AGP02, 12.2.18], or [Koc96, 3.4.4], or [Swi75, 9.12] �

This is the original theorem of Brown, and the one that requires serious work. Below, we
will see some other, easier representability theorems, which we will also call after Brown, and
which follow from this one.

Now, the above concerns only each H̃n separately. But they are linked: there is e.g. the
connecting morphism in the long exact sequence, or the natural isomorphism

H̃n+1(ΣX; G) ∼= H̃n(X, G).

How is this property reflected in the representing spaces? Well,

H̃n+1(ΣX) ∼= [ΣX, K(G, n + 1)] ∼= [X, ΩK(G, n + 1)],

1This is important, see MO:Brown representability for non-connected spaces.
2A weak pullback is like a pullback, only that universal arrows to the pullback may not be unique.
3The link between this Mayer–Vietoris axiom and what is usually known as “Mayer–Vietoris” is explored in

the exercises.
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https://mathoverflow.net/questions/104866/brown-representability-for-non-connected-spaces
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so as this isomorphic to [X, K(G, n)] and this is a natural isomorphism in X, we get a homotopy
equivalence

K(G, n) ∼−→ ΩK(G, n + 1)

for every n ≥ 0, by the Yoneda lemma.
All in all, we have a sequence of pointed spaces Xn := K(G, n) for n ≥ 0 with homotopy

equivalences Xn → ΩXn+1. Relaxing “homotopy equivalence” to weak homotopy equivalence,
we obtain the notion of an Ω-spectrum.

Example 3.3. Let G be an abelian group. We observed above that there is an Ω-spectrum
with n-space given by an Eilenberg–Mac Lane space K(G, n), which we can choose to be a
CW-complex. This is the Eilenberg–Mac Lane Ω-spectrum of G which we will denote by HG.

The Brown representability theorem needs only the wedge axiom and the Mayer–Vietoris
axiom to conclude representability. But cohomology is not characterized by these axioms:
we require something stronger. If we add those stronger requirements, do we get stronger
representability? The answer is yes, but first let us give the definition of a reduced generalized
cohomology theory.

Definition 3.4. Let hn : CWop
∗ → Ab, n ∈ Z be functors, and let σn : hn ⇒ hn+1 ◦ Σ be natural

transformations. Suppose this data satisfies the following axioms, for all n:

• (Homotopy) hn takes homotopical maps to equal maps, i.e. hn descends to the homo-
topy category Ho(CW∗),
• (Suspension) σn is a natural isomorphism,
• (Exactness) If A ⊆ X is a subcomplex, then hn(X/A) → hn(Y) → hn(X) is an exact

sequence.
• (Additivity) hn takes coproducts to products.

We say that (hn, σn) is a (reduced, generalized) cohomology theory.

Remark 3.5. We are allowing negative n here. Indeed, there are interesting cohomology the-
ories with non-zero negative values, as we shall see. Note also that we have restricted to
CW-complexes. This is not always needed, nor always a good idea: sometimes the homotopy
category of well-pointed spaces is enough. In that case we need to add a weak equivalence
axiom: hn takes weak equivalences to isomorphisms, and the exactness axiom takes a cofiber
sequence A → X → C as input. The two notions are equivalent, by CW-approximation and
some refinements of that, see [May99a, 10.7, 13.1, 14.1].

We will often omit the σn from the notation. Note how Mayer–Vietoris doesn’t feature here:
well, Mayer–Vietoris is a consequence of the above axioms [Swi75, 7.19]. There is a definition
of a morphism of cohomology theories, which you can guess how it goes. Also, you can deduce
the existence of long exact sequences in cohomology from the axioms and the Puppe sequence.

Recall the following classical result:

Theorem 3.6. Let hn be a cohomology theory and let G be an abelian group. There exists a unique
cohomology theory up to isomorphism which satisfies the following additional axiom:

• (Dimension) hn(S0) = 0 for all n 6= 0 and h0(S0) ∼= G.

Ordinary cohomology theory in the form of e.g. singular cohomology with coefficients in G, H̃n(−; G),
satisfies these axioms.

Generalized cohomology theories can be very powerful tools, we will give examples later
(perhaps the most famous and classical are topological K-theory and cobordism).
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Remark 3.7. Perhaps you haven’t seen these axioms but other similar axioms, the Eilenberg–
Steenrod axioms, for unreduced cohomology. These are defined not in a category of pointed
spaces, but in a category of pairs of spaces, i.e. they incorporate the definition of the relative ho-
mology groups hn(X, A) where A is a sub-CW-complex of A. You need not fret: a cohomology
theory uniquely determines a reduced cohomology theory and viceversa (dimension axiom or
not), see the following exercise.

We saw above that the representing spaces of Hn(−; G) can be organized into an Ω-spectrum.
Conversely and more generally:

Definition 3.8. Let E be an Ω-spectrum. For each n ≥ 0, define

En(−) := [−, En] : CWop
∗ → Ab,

and for n < 0 define En(−) = [Σ−nX, E0].

Proposition 3.9. The functors En together with the structure natural isomorphisms

En(−) = [−, En] ∼= [−, ΩEn+1] ∼= [Σ−, En+1] = En+1(−) ◦ Σ

define a cohomology theory.

Remark 3.10. We have defined the negative cohomology groups separately, which looks a bit
odd, but this only stems from the fact that Ω-spectra are mere N-sequence of spaces instead of
Z-sequences. This is a convention, as will be remarked in Side remark 3.17, and does not affect
anything serious. If we had defined Ω-spectra as Z-sequences of spaces, then the above would
look more harmonious: we would have En(−) = [−, En] for all n. Indeed,

[Σ−nX, E0] ∼= [X, Ω−nE0] ∼= [X, E−n].

You can extend an N-based Ω-spectrum to a Z-based one, just by defining E−n := ΩnE0 with
identity transpose structure maps, and it’s coherent with the above.

Theorem 3.11 (Brown’s representability theorem, II). If h∗ is a cohomology theory, then there exists
an Ω-spectrum E and an isomorphism of cohomology theories h∗ ∼= E∗.

PROOF. The hard part was Theorem 3.2. This part is not that hard and it’s an exercise. Note
how the connectedness hypothesis is gone. �

We will come back to these results in more generality after we have developed some theory.

Remark 3.12. How unique is E in the previous theorem? Quite unique, but this is surprisingly
subtle and requires more technology than what we have available, see math.SE:3059691.

How is the above result a “representability” result in the categorical sense? It doesn’t look
like one at first glance, but we will sketch below how it can be seen in this light. We are now
going to work towards making the theorem above be a representability result. The plan is
this: first, see the cohomology functor as landing in graded abelian groups h∗ : Ho(CW∗)op →
GrAbZ. Extend this to a “cohomology theory in spectra” h∗ : Ho(Sp)op → GrAbZ, endow
the hom-sets in Ho(Sp) with the structure of a graded abelian group, then prove that h∗ is
representable with respect to these.

This will be realized in Section 1, but we first need to do some work towards that goal.

2. Some elementary definitions

The Ω-spectra introduced in the previous section are special cases of the more general
spectra, where we do not require the maps to be equivalences (and we also rather consider
their transposes under the (Σ, Ω) adjunction in the definition):

https://math.stackexchange.com/questions/3059691/spectra-and-cohomology-theories
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Definition 3.13. A spectrum X is a sequence of pointed spaces Xn together with pointed maps
ΣXn → Xn+1.

An Ω-spectrum X is a sequence of pointed spaces Xn together with weak homotopy equiva-
lences Xn → ΩXn+1.

Example 3.14. Consider the homeomorphisms ΣSn ∼=−→ Sn+1. This defines the sphere spectrum S.
This is not an Ω-spectrum. Indeed the first structure map is S0 → ΩS1 ' Z.

Remark 3.15. If X is an Ω-spectrum, then there is a chain of weak homotopy equivalences

X0
∼
// ΩX1

∼
// Ω2X2

∼
// · · ·

which justifies the terminology that X0 is an infinite loop space. The space X0 is the 0-space of X
and is the focus of particular attention. The space Xk is a k-fold delooping of X0.

More generally:

Definition 3.16. If X is a pointed space, define the suspension spectrum Σ∞X to be the spectrum
which has ΣnX on level n, together with the homeomorphisms ΣΣnX

∼=−→ Σn+1X.4 Note that
S = Σ∞S0.

If X is an unpointed space, we denote by Σ∞
+(X) the spectrum Σ∞(X+), where (−)+ is an

added disjoint basepoint.

Side remark 3.17. This usage of the word “spectrum” is not related either to the usage in
algebraic geometry (spectrum of a ring) or in functional analysis (spectrum of an operator).

Moreover: different authors may have different objects in mind when they write “spec-
trum”. For starters, some authors allow a spectrum to consist of spaces also in negative dimen-
sion, e.g. [Rud98, II.1.1], though this is actually immaterial by Example 4.18. Some authors,
typically Peter May and collaborators [BMMS86], will require the structural maps of an Ω-
spectrum to be homeomorphisms Xn → ΩXn+1: they will drop the Ω and call the more general
ones as we have defined them “prespectra”.

Other authors will require that the spaces Xn be CW-complexes, and that the image of
ΣXn → Xn+1 be a subcomplex: these are the CW-spectra of [Ada74]. Yet other authors will
note that indexing by the natural numbers is too rigid, and they will define coordinate-free
spectra, where n is replaced by an n-dimensional real vector space sitting in a fixed copy of
R∞. The coordinate-free approach of Lewis–May [LMSM86] (which again favor Ω-spectra
with homeomorphisms as structure maps) is the basis for the very important EKMM-spectra
of [EKMM97], the first category of spectra with a symmetric monoidal model structure.

Around the same time, there appeared other similarly well-behaved presentations: the
symmetric spectra of [HSS00], [Sch] and the orthogonal spectra [MMSS01]. These avoid the
coordinate-free approach, but use group actions on the component spaces: symmetric groups
and orthogonal groups, respectively.

Another historically important approach, because it was one of the first ways to present
what we now call the stable homotopy category, was the semisimplicial/combinatorial spectra
of Kan, based on simplicial sets rather than on topological spaces. An interesting early com-
parison between the earliest approaches to the stable homotopy category can be found in the
introduction to [Vog70].

You may be starting to worry: why are there so many different versions (and the above
summary does not exhaust them)? Are they not all equivalent? Well, yes and no: they are all
equivalent in that they all present the same homotopy theory, for instance, they have equivalent

4Equivalently, we could say a suspension spectrum is a spectrum in which the structure maps are
homeomorphisms.
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homotopy categories: that will be the stable homotopy category that we will introduce below.5

They are non-equivalent categories, though: they may have very different-looking objects and
morphisms. Each has their advantages and disadvantages, but those differences are apparent
later into the theory (e.g. the smash product), which is why here we stick with a simple, but for
now sufficient, version.

All of the models mentioned above present the homotopy theory of spectra as a model
structure. There are other ways of going about it, e.g. with some other presentation for (∞, 1)-
categories, for example quasi-categories, also known as ∞-categories, as developed by Joyal
and later by Lurie [Lur09]. These gadgets also have homotopy categories, and there is an
∞-category of spectra whose homotopy category is the stable homotopy category [Lur17].

We now introduce the notion of a map of spectra, though this notion does not capture
everything we want to capture: we’ll explain that in Section 3.

Definition 3.18. Let X, Y be spectra. A map f : X → Y is a collection of maps of pointed spaces
fn : Xn → Yn such that the following squares commute for all n ≥ 0.

ΣXn
Σ fn

//

��

ΣYn

��

Xn+1 fn+1

// Yn+1

There are obvious notions of composition and identity, so we have a category Sp of spectra.

Remark 3.19. You can extend Σ∞ to a functor Top∗ → Sp, and prove that it is left adjoint to the
functor Sp→ Top∗ that takes X to X0. A word of warning: this functor is sometimes called Ω∞,
and we will also call it thusly, even if the name only makes sense when the functor is restricted
to Ω-spectra (see Remark 3.15).

Let us now consider some purely categorical (not homotopical) properties of this category.

2.1. Limits and colimits. I cannot stress this enough: while sometimes these categorical
constructions will be useful, they are often not what we would like to do when doing actual
stable homotopy theory, because they may not reflect anything worthwhile homotopy-wise, cf.
e.g. our discussion of homotopy colimits in the first chapter. Equivalently: these constructions
are often model-dependent, in that they are going to look quite different (and perhaps be
non-equivalent) in other models for spectra (as per Side remark 3.17). We only consider model-
independent results to be the ones we are interested in.

Definition 3.20. The zero spectrum ∗ has a one-point space in each level. Alternatively, it is
Σ∞(∗). It is a zero object in Sp.

More generally, limits and colimits are easily computed from those in Top∗, levelwise:

Proposition 3.21. Let I be a small category, and let X : I → Sp be a diagram. The colimit of X is such
that (colimiX(i))n = colimi(X(i)n). The structure maps are given by

ΣcolimiX(i)n ∼= colimiΣX(i)n
colimiρ(i)n−−−−−→ colimiX(i)n+1

where ρ(i)n is a structure map of X(i). Limits are obtained similarly, only the transpose structure maps
are easier to define, because Ω commutes with limits.

Therefore, Sp is complete and cocomplete.
5Though note that it took some time to reach the consensus of what, precisely, deserves to be called the stable

homotopy category. See the introduction to [Vog70], for example. There were earlier, non-equivalent models, the
best-known one being the Spanier-Whitehead category, which still has a place in the theory, but is not the protagonist.
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Exercise 3.22. Work out how products, coproducts, pushouts and pullbacks look like. Note that the
product of Ω-spectra is an Ω-spectrum.

2.2. Enrichment, tensoring and cotensoring over spaces. In the chapter on spaces, there
was a section on the closed symmetric monoidal structure and enrichment over itself. Well, as
we warned in Side remark 3.17, there is no analogue of all that for Sp as we have defined it.
This is a defect of this particular model for spectra. Better-behaved categories of spectra have a
closed symmetric monoidal structure behaving the way we want it to behave.

On the other hand, there is an enrichment over pointed spaces, together with a tensoring
and a cotensoring (see [Rie14, 3.7] for details on this terminology).

Definition 3.23. If X and Y are spectra, define the pointed space Map(X, Y), the mapping space
from X to Y, to be the subspace of ∏n≥0 F(Xn, Yn) given by maps which commute with the
structure maps of X and Y. Categorically, Map(X, Y) is the equalizer in Top∗:

Map(X, Y) ∏n≥0 F(Xn, Yn) ∏m≥0 F(ΣXm, Ym+1)

where the arrows take fn : Xn → Yn to the object in the product given by ∗ in all degrees

except for n; there, one map takes it to ΣXn
ρX

n−→ Xn+1
Σ fn+1−−−→ ΣYn+1 and the other one to

ΣXn
Σ fn−−→ ΣYn

ρY
n−→ ΣYn+1.

Note that a point in Map(X, Y) is exactly a map of spectra X → Y.

Definition 3.24. If X is a spectrum and K is a based space, define the tensor or smash product
spectrum X ∧ K by (X ∧ K)n = Xn ∧ K and structure maps

Σ(Xn ∧ K) ∼= ΣXn ∧ K
ρn∧id−−−→ Xn+1 ∧ K

where ρn is the structure map.
Define also the cotensor or function spectrum F(K, X) by F(K, X)n = F(K, Xn) with transpose

structure maps

F(K, Xn)→ F(S1, F(K, Xn+1))

given by

ρn ◦ (id∧ ev) ∈ HomTop∗(S
1 ∧ F(K, Xn) ∧ K, Xn+1) ∼= HomTop∗(F(K, Xn), F(S1, F(K, Xn+1))).

where ev denotes the evaluation map (the counit of the adjunction).

Remark 3.25. For any based space K, we have S∧ K = Σ∞K.

Proposition 3.26. The category Sp is enriched over Top∗, with tensor given by the smash product and
cotensor given by the function spectrum. Essentially, this means that there are natural homeomorphisms
of pointed spaces:

F(K, Map(X, Y)) ∼= Map(X ∧ K, Y) ∼= Map(X, F(K, Y)).

Remark 3.27. If we had defined the tensor on the other side, i.e. K ∧ X, then the above adjunc-
tion doesn’t work. If we wanted to have the tensor like this, we should change the definition
of a spectrum so as to have structure maps Xn ∧ S1 → Xn+1. This is the first of a series of
handedness subtleties.
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2.3. Other basic operations.

Definition 3.28. The shift of a spectrum X is the spectrum sh(X) defined as sh(X)n = Xn+1.
The unshift of X is sh−1(X), defined as sh−1(X)0 = ∗, sh−1(X)n = Xn−1 for n ≥ 1. The structure
maps in both of these constructions are inherited from X; for the unshift, in degree 0 it’s the
unique map ∗ → X0. We can iterate these constructions, getting shk for all k ∈ Z. They define
functors Sp→ Sp.

Note that shn ◦ shm = shn+m for all n, m ≥ 0 or n, m ≤ 0. Note also that sh ◦ sh−1 = id, but
sh−1 ◦ sh is not the identity.

Definition 3.29. The cylinder of X ∈ Sp is X ∧ I+, where I = [0, 1] is the interval. Considering
{0}, {1} : ∗ → I gives two maps ι0, ι1 : X → X ∧ I+.

Exercise 3.30. Prove there is an isomorphism

X ∧ S1 ∼= cofib(X ∨ X
(ι0,ι1)−−−→ X ∧ I+)

where cofib denotes the strict cofiber (i.e. the pushout of that map against the map to the point).

We have sh(X) and X ∧ S1. They both are “kind of suspensions” in the following sense:

Remark 3.31. The functor sh commutes with the suspension of spaces under Σ∞, in the sense
that it makes the following diagram commute.

(3.32) Top∗
Σ
//

Σ∞

��

Top∗

Σ∞

��

Sp // Sp

The functor −∧ S1 makes the diagram commute up to natural isomorphism.

Now the question to ask is: are sh(X) and X ∧ S1 the same? Well, they are not isomorphic.
In fact, there is no natural map X ∧ S1 → sh(X) at all! The only reasonable candidate would be
ρn ◦ τ : Xn ∧ S1 → Xn+1, where τ is the twist. If this defined a map of spectra, we would have
a commutative diagram

S1 ∧ Xn ∧ S1 id∧(ρn◦τ)
//

ρn∧id
��

S1 ∧ Xn+1

ρn+1

��

Xn+1 ∧ S1
ρn+1◦τ

// Xn+2

But this diagram does not commute. An analogous argument proves that there is no natural
map sh(X)→ X ∧ S1, either.

Side remark 3.33. In a model-categorical sense, − ∧ S1 deserves to be treated as the “real
suspension” as per Exercise 3.30 (which proves that X ∧ S1 is the model-categorical suspension,
which can be defined for any pointed model category).

As if we didn’t have enough with two contenders for the “suspension” title, here’s a third
one:

Definition 3.34. If X is a spectrum, define its suspension ΣX as the spectrum having S1 ∧ Xn in
degree n, and structure maps

id∧ ρn : S1 ∧ S1 ∧ Xn → S1 ∧ Xn+1.



32 3. GETTING STARTED WITH SPECTRA

Define the loops ΩX as the spectrum with (ΩX)n = F(S1, Xn). with transpose structure maps
given by

F(S1, Xn)
(ρ̃n)∗−−→ F(S1, F(S1, Xn+1)) = ΩF(S1, Xn+1).

They define functors Sp→ Sp.

Exercise 3.35. (1) Prove that (Σ, Ω) form an adjoint pair of functors.
(2) Prove that Σ also makes (3.32) commute up to natural isomorphism. But be careful: the natural

isomorphism uses an associator, not the twist, which doesn’t work here.

In Chapter 5 we shall prove that ΣX, sh(X) and X ∧ S1 are all equivalent in a homotopical
sense. While we just saw that there are no direct comparison maps between X ∧ S1 and sh(X),
we can at least build a map ΣX → sh(X). In degree n, let it be ρn : S1 ∧ Xn → Xn+1. It indeed
commutes with the structure maps:

S1 ∧ S1 ∧ Xn
id∧ρn

//

id∧ρn

��

S1 ∧ Xn+1

ρn+1

��

S1 ∧ Xn ρn+1
// Xn+2

We shall see that this map is an equivalence, in a homotopical sense.

Remark 3.36. There are two other spectra you could reasonably call the “suspension” of X. For
example, you could have S1 ∧ Xn in stage n, and as structure maps you could have S1 ∧ S1 ∧
Xn

τ∧id−−→ S1 ∧ S1 ∧ Xn → Xn+1. Alternatively, you could do the same on the other side.

3. An example: Topological K-theory

In this section, [X, Y] will denote homotopy classes of maps between spaces without base-
point.

3.1. Vector bundles. Recall the notion of an n-plane real vector bundle: this is a map of
spaces p : E → B such that for every b ∈ B the preimage p−1(b) ⊆ E has the structure of
a real vector space of dimension n. Moreover, the map p is locally trivial, in the sense for
every b ∈ B there is an open neighboorhood U ⊆ B containing it and a homeomorphism
ϕ : p−1(U)→ U ×Rn such that the diagram

p−1(U)
ϕ

∼=
//

p
##

U ×Rn

p0
{{

U

commutes, and moreover, the restrictions ϕ : p−1(b′) → {b′} ×Rn ∼=−→ Rn are linear isomor-
phisms for every b′ ∈ U. We sometimes incorporate the fact that the fiber is a real vector space
isomorphic to Rn into the notation, as Rn → E→ B.

In other words, n-plane real vector bundles are equivalently fiber bundles with fiber Rn

and structure group GL(n, R). Every vector bundle over a CW-complex (or, more generally,
over a paracompact space) is a Hurewicz fibration.

I’m hoping you know about this theory at least a bit. If not, you can check [Swi75, Chapter
11], [Lee13, Chapter 10] or [DK01, Chapter 4]. Here’s a couple of important examples:

Example 3.37. (1) The trivial n-plane bundle over B is given by Rn → B×Rn π0−→ B.
(2) If M is a smooth manifold, then the tangent spaces at all the points x ∈ M can be

assembled into a space TM and there is a bundle Rn → TM→ M, the tangent bundle.



3. AN EXAMPLE: TOPOLOGICAL K-THEORY 33

(3) There is a line bundle R→ E→ S1 called the Möbius bundle, where E is a space that is
a non-compact version of the Möbius strip.

If we just say “vector bundle”, then this means that we are not fixing the dimension, and
thus, if the base is not connected, then the fibers over different connected components may
have different dimensions.

It’s not hard to define maps of vector bundles and isomorphism classes of vector bundles.
Explicitly, an isomorphism of vector bundles from p1 : E1 → B to p2 : E2 → B is a homeomor-
phism f : E1 → E2 such that p2 ◦ f = p1 and the induced map on fibers f : p−1

1 (b)→ p−1
2 (b) is

a linear isomorphism.
Vector bundles can be pulled back along maps to the base. Note that a vector bundle

Rn → E → B is trivial if and only if there exist sections si : B → E, i = 1, . . . , n such that
{s1(b), · · · , sn(b)} are linearly independent for all b ∈ B.

There is a construction called the Whitney sum of vector bundles: if E1 → B, E2 → B are
vector bundles over the same base, then first you can construct its product, which is the obvious
vector bundle E1× E2 → B× B. Pulling it back along the diagonal B→ B× B gives the Whitney
sum, a vector bundle denoted E1 ⊕ E2 → B whose fibers are given by the direct sum of the
fibers of the two bundles.

Importantly, recall that vector bundles have classifying maps. In a word, the set of equiva-
lence classes of n-plane real vector bundles over a paracompact B is in bijection with [B, BO(n)],
where BO(n) is the classifying space of O(n), the topological group of linear isometries of Rn

[AGP02, 8.5.13]. To pass from one to the other: there exists a universal n-plane vector bundle
over BO(n), in the sense that for any vector bundle ξ over B, there exists a map B → BO(n),
such that pullback of the universal bundle along this map gives you ξ, up to equivalence. A
concrete construction of this universal vector bundle is given by the tautological bundle over
the Grassmannian Gn(R∞) ' BO(n); alternatively, you can take your preferred model for
EO(n)→ BO(n), the universal principal O(n)-bundle, and change the fiber to Rn, getting the
universal n-plane vector bundle EO(n)×O(n) Rn → BO(n).

If you are wondering about why O(n) precisely, think of this: it would be more natural to
consider GL(n, R) (all linear isomorphisms), but by the Gram–Schmidt process, GL(n, R) is
homotopy equivalent to O(n), see e.g. [Swi75, 11.44].

We can do all of the above for complex vector bundles. In that case, U(n) takes the place
of O(n), and “dimension” means complex dimension. We could also do quaternionic vector
bundles, in which case Sp(n) steps in (this is the symplectic group).

Remark 3.38. We have barely said anything about what B means here. This construction, called
the classifying space or the bar construction, is quite fundamental. It takes a topological group
into a pointed connected space BG satisfying that G is weakly homotopy equivalent to ΩBG:
thus, a topological group G admits a “connected delooping” BG, and indeed the adjunction
(B, Ω) between topological groups and pointed connected spaces is such that both the unit and
the counit are weak homotopy equivalences. Thus, these two categories are “equivalent” in a
certain homotopical sense. Note that πi+1(BG) ∼= πi(G).

The space BG is also characterized by a property similar to the above: it is a space such that
[X, BG] is in bijection with the isomorphism classes of principal G-bundles. See [Swi75, 11.33]
for an indirect construction via Brown’s representation theorem; see [Rud98, IV.1.62ff.] for a
more direct algebraic construction which has the added advantage of working for topological
monoids.

If G is discrete, then BG is merely a K(G, 1), but when the topology is more interesting, BG
is richer. For example, its cohomology is closely related to characteristic classes, see e.g. [Swi75,
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16.10] for a computation of some of these. As for the homotopy groups, we’ll talk about the
ones of BU below.

Side remark 3.39. The bijection between [X, BO(n)] and isomorphism classes of real n-plane
vector bundles is one of many instances of this dichotomy between the “fibrational” approach
vs. the “functional” (or “functorial”) approach. I prefer to think of them as vertical vs. horizon-
tal, following Grothendieck’s wisdom that bundles and fibrations should be written vertically.

Another instance is in 2-category theory: Grothendieck fibrations over a category B are
equivalent to contravariant pseudofunctors from B to Cat, and the equivalence in one direction
is given by pullback over a universal Grothendieck fibration. One can replace Cat by the 2-
category of groupoids, or even with the category of sets. Going in the other direction, one can
generalize it to ∞-category theory and this is the backbone for a lot of the theory in [Lur09] and
[Lur17]: it’s hard to overstress its importance.

In the case of functors to sets, an important example is given by the following. It was
realized by Segal in [Seg74] that the category of commutative monoids is equivalent to the
category of functors Fin∗ → Set satisfying a couple of conditions. Passing to the fibrational
world, this is equivalent to discrete fibrations over Fin∗. This is a very useful realization that
helps put into motion the formalization of the concept of E∞-monoids, an object that already
appeared in Side remark 2.10. This is valid not only for monoids but for all sorts of algebraic
structures, and it helps e.g. in formulating what is a symmetric monoidal ∞-category – see
[Lur17].

Finally, another instance of the fibrational vs. functorial approach can be found in the
theory of covering spaces: covering spaces over B are equivalent to locally constant sheaves
over B (which can be described as functors Π1(B)→ Set from the fundamental groupoid); more
generaly, étalé spaces are equivalent to sheaves over B; more generally, Top/B is equivalent to
Fun(O(B)op, Set), where O denotes the opens. This is, I think, less strictly analogous, since
passage from one of the sides to the other is not given by pullback over a universal map, and
we have maps over B on one side but functors out of O(B) on the other side.

3.2. The K-group. Sources for further reading: [Mit11], [Swi75, Chapter 11], [Hus94],
[Hat17].

Let X be a space. If we want to extract information from it algebraically (i.e. do algebraic
topology, literally!), we can look at its homology groups or its homotopy groups. The former is
roughly about linearly mapping simplices into X, the latter is roughly about mapping spheres
into X. Now, we’ll take another approach: we’ll look at the complex vector bundles that lie
over X. We could also do it for real or symplectic vector bundles.

Definition 3.40. We let Vect(X) denote the set of isomorphism classes of complex vector bun-
dles over a space X.

Now, you can prove that Vect(X) has a commutative monoid structure: (Vect(X),⊕, ε0).
Here ⊕ is the Whitney sum, and for every j ≥ 0, we let εj denote the trivial j-dimensional
bundle over X.

Commutative monoids are a bit unwieldy compared to abelian groups. So we want to
add an inverse. We can do it “by force”: one way is to take the free abelian group, and then
force the new + to coincide with the old ⊕ by taking a quotient of the objects of the form
m + n − m ⊕ n. This is a description of the left adjoint to the inclusion of abelian groups
in commutative monoids. It is called Grothendieck construction, but beware, there are several
different constructions with the same name. It’s nothing too sophisticated: think of how Z is
constructed from N. You can represent every element of Z by a pair (n, m) ∈ N×N, to be
thought of as n−m. For a general monoid is sligthly more complicated (see remark below), we
will look at it in the exercises.
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Definition 3.41. The K-group of X, denoted K(X), is the Grothendieck construction of Vect(X).
An element of Vect(X) is called a virtual vector bundle over X.

If we denote by [ξ] the image of ξ under the canonical map Vect(X) → K(X), then any
virtual vector bundle can be written as [ξ]− [η] for some vector bundles ξ and η.

Remark 3.42. One has to be careful, though, because e.g. [ξ]− [η] = 0 in K(X) does not mean
ξ and η are isomorphic vector bundles, but rather that there exists a ζ such that ξ ⊕ ζ ∼= η ⊕ ζ.
The reason for this discrepancy with the case where Z is built from N is that N is a cancellative
monoid (i.e. a + b = a + c implies b = c) which is not true for Vect(X).

Using pullbacks, Vect can be extended to a contravariant functor from the category of spaces
to the category of commutative monoids, and thus K is extended to a functor K : Topop → Ab.
Moreover, you can prove that K takes homotopies to equalities.

Side remark 3.43. What would happen if we did not take isomorphism classes in the definition
of Vect? Recall Side remark 2.10. We define π1(X) as homotopy classes of based maps S1 → X,
whereas we get more information by looking at the whole space of based maps S1 → X, which
is not only an abelian group up to homotopy, which provides π1(X) with its abelian group
structure, but it’s even an A∞-space.

We should be wondering about something similar here, as we should do each time that we
see some set of isomorphism classes. And indeed, we could play a similar game, but it would
again require technology that is unavailable to us at this stage. I can still sketch it. I learned this
from Denis Nardin, and I don’t think it has been written in detail anywhere, though a similar
approach to algebraic K-theory has been presented in [Nik17], see also [GGN15].

Consider V(X), the category of complex vector bundles over X. By considering it as a cate-
gory, we have hom-sets of vector bundle maps E→ E′. This is a subset of the set HomTop(E, E′),
which is a topological space with the compact-open topology, so we can view HomV(X)(E, E′)
as a (sub)space. Since composition is continuous, this provides V(X) with the structure of a
category enriched over Top, also known as a topological category. Moreover, V(X) has a sym-
metric monoidal structure given by the Whitney sum, and it is compatible with the enrichment.

Now, we can restrict to the underlying groupoid V∼(X) (also known as the core): this
means simply restrict to the subcategory with all objects but only isomorphisms as maps. It is
a symmetric monoidal topological groupoid, and this is already a higher version of Vect(X):
instead of taking isomorphism classes, we are taking the isomorphisms and considering them
with higher structure, namely the topological enrichment; the commutative monoid structure
of Vect(X) is generalized as a symmetric monoidal structure.

Now, we would like to add homotopy inverses to the symmetric monoidal structure ⊕, to
get a higher version of K(X). The standard thing to do is to first take nerves, which takes us out
of topological 1-categories and into ∞-categories, which are more convenient. The traditional
nerve functor takes a category and gives you a simplicial set; if your category was a groupoid,
it gives you a Kan complex. More elaborately, if you have a topological category, then you have
a homotopy-coherent nerve functor Nh which gives you a quasicategory (an ∞-category). If
your topological category was a topological groupoid, then you get a Kan complex: a “space”.
Finally, if you have a symmetric monoidal topological groupoid, then its homotopy-coherent
nerve is an E∞-space. And there is a group-completion functor from E∞-spaces to grouplike
E∞-spaces, which, as we announced in the introduction, are equivalent to the category of
connective spectra, but we shall not have enough time to prove that.

In conclusion, the higher version of the abelian group K(X) would be a grouplike E∞-space,
or, equivalently, a connective spectrum. The higher version of the functor K(−) would be the
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composition

Topop V
// SMTopCat

(−)∼
// SMTopGrpd Nh

// E∞(S)
(−)grp

// Egrp
∞ (S) ' Spcn,

and, starting with a finite CW-complex X, we can identify the resulting connective spectrum as
F(X+, ku) where ku is the connective K-theory spectrum, which we haven’t yet introduced. The
precise relation between K(X) and F(X, ku) is that π0F(X+, ku) ∼= K(X). So K(X) is ku0(X+):
the 0-th cohomology group for a certain spectrum ku... we’re getting ahead of ourselves, but
bear with me.

The above gives a possible construction of ku: do that sequence of functors starting from the
one-point space. 6 In other words, start with the symmetric monoidal topological category of
finite dimensional complex vector spaces, then take its core, its homotopy-coherent nerve, and
then group-complete. Note that, before group-completion, the E∞-space is

⊔
n≥0 BGL(n, C) '⊔

n≥0 BU(n). This follows from the definition of the nerve, since the isomorphisms of vector
spaces are given by all the GL(n, C). The reason its group completion is BU ×Z is the classi-
cal group-completion theorem of McDuff–Segal, a modern version of which can be found in
[Nik17, Example 8].

Finally, another important realization: from the above description, we can see how topolog-
ical K-theory is linked to (direct sum) algebraic K-theory. Let R be a ring. Consider the discrete
symmetric monoidal category of finitely generated, projective R-modules. Then doing the
above procedure defines an E∞-group (or a connective spectrum) K(R), its algebraic K-theory.
If R has invariant basis number (e.g. R is commutative), then the intermediate E∞-monoid is⊔

n≥0 BGL(n, R)... but be careful! That GL(n, R) there is discrete, since we started with a discrete
category. So it’s not true that ku is the same as K(C). While the homotopy groups of the former
are easily described (we’ll come back to that below), the ones of the latter, denoted Ki(C), are
much harder, and I don’t think they’re fully described yet. See math.SE:higher K-theory of
complex numbers for a summary.

The above highlights how both topological K-theory and algebraic K-theory are two in-
stances of the same machine, but they’re also more directly related, for example via the classical
Serre–Swan theorem, which says that the topological K-theory group of a compact Hausdorff
space X is isomorphic to the algebraic K-theory of its ring of complex functions C(X, C).

If X is a pointed space, there is a function d : Vect(X) → Z which takes a vector bundle
to the dimension of its fiber over the basepoint. This is a map of commutative monoids, so
it induces a homomorphism of abelian groups d : K(X) → Z, the virtual dimension. But be
careful! This is sloppy terminology, because it’s only about the dimension over the basepoint:
if the space is not connected, the dimension over other points could vary. So we should rather
say “virtual dimension over the basepoint”.

Note:

Example 3.44. The map d : K(∗) → Z is an isomorphism, since Vect(∗) ∼= N. For a general
X, we can therefore identify d with the map K(X) → K(∗) induced by the inclusion of the
basepoint ∗ → X.

Definition 3.45. For a pointed space X, define K̃(X) to be the kernel of d : K(X) → Z. It
consists of virtual vector bundles of virtual dimension zero, or, alternatively, it consists of
differences of classes of vector bundles over X whose fiber over the basepoint has the same
dimension.

6A more hands-on construction of ku that uses the same principles can be found in [Sch, 1.20].

https://math.stackexchange.com/a/1855062/2614
https://math.stackexchange.com/a/1855062/2614


3. AN EXAMPLE: TOPOLOGICAL K-THEORY 37

Note that d has a section, induced by the map X → ∗, so we have a split short exact
sequence

0 K̃(X) K(X) Z 0.
d

In particular, K(X) ∼= K̃(X)⊕Z.

Example 3.46. (1) K̃(∗) = 0.
(2) Vect(S0) ∼= N⊕N, so K(S0) ∼= Z⊕Z, and K̃(S0) ∼= Z.
(3) K̃(X+) ∼= K(X).

We can give a more direct interpretation of K̃(X) using the following definition.

Definition 3.47. Let ξ, η be two vector bundles over a space X. We say that ξ and η are stably
equivalent if there exist n, m ≥ 0 such that ξ ⊕ εn ∼= η ⊕ εm, i.e. they become equivalent after
summing with large enough trivial bundles on both sides.

Stable equivalence is an equivalence relation; we let E(X) denote the set of equivalences
classes. We denote by {ξ} a stable equivalence class.

We can define ⊕ in E(X) by {ξ} ⊕ {η} = {ξ ⊕ η}. This is a well-defined operation, as-
sociative and commutative, and it has {εn} as its neutral element, for any n ≥ 0, so this is a
commutative monoid. It also has inverses, at least when X is compact:

Proposition 3.48. If ξ is a vector bundle over a compact space X7 then there exists an n ≥ 0 and a
vector bundle η over X such that ξ ⊕ η ∼= εn. Therefore, E(X) is an abelian group.

PROOF. See e.g. [Kar08, I.6.5]. This is a foundational result. Essentially, it goes like this:
take an open cover of X such that ξ restricted to those opens is trivial. Since X is compact,
we can assume the cover is finite. Now, an n-plane vector bundle is trivial iff there exist n
sections of it which are linearly independent. Using a partition of unity, you can extend these to
a whole lot of sections of ξ which are generators, defining a map of bundles f : εN → ξ which
is surjective over every x ∈ X, and in fact f has a left inverse g (a consequence of the fact that
every short exact sequence over R splits). Define η to be the kernel of g ◦ f . �

Corollary 3.49. Any virtual vector bundle over a compact space X is of the form [ζ]− [εn] for some
n ≥ 0.

PROOF. Take a virtual vector bundle [ξ] − [η]. Take n ≥ 0 and β such that η ⊕ β ∼= εn.
Therefore,

[ξ]− [η] = [ξ] + [β]− [εn] = [ζ]− [εn]

for ζ = ξ ⊕ β. �

Proposition 3.50. Let X be a pointed compact space. Then E(X) ∼= K̃(X).

PROOF. Let Vect(X) → E(X) be the map sending [ξ] to {ξ}. It’s a morphism of commu-
tative monoids, so it defines a homomorphism K(X) → E(X). Exercise: prove that when
restricted to K̃(X), it’s an isomorphism. �

In particular, if X is pointed compact we can describe the isomorphism K(X) ∼= K̃(X)⊕Z

as
[ξ]− [εn] 7→ ({ξ}, d(ξ)− n),

identifying K̃(X) with E(X) as is standard.

7Or a finite-dimensional CW-complex [Swi75, 11.55], both hypotheses work but neither contains the other. For
simplicity, we will stick to compactness.
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Example 3.51. This is a real example, not complex, for simplicity. Let M be an n-dimensional
smooth manifold. Let ir : M → Rn+r and is : M → Rn+s be embeddings into Euclidean space
(they exist by Whitney’s embedding theorem). There’s a theorem that tells you that they are
equivalent, once you go farther into a big enough RN .

Now, consider the normal bundles defined by the embeddings: Rr → N(ir)
νir−→ M and

Rs → N(is)
νis−→ M. As a consequence of the above theorem, νir ⊕ εN−r ∼= νis ⊕ εN−s.

If r = s and the embeddings are not equivalent, this is an example of two bundles of the
same dimension which are not equivalent but are stably equivalent.

The stable equivalence class of any normal bundle to M is called the stable normal bundle.
Contrary to its unstable counterparts, it does not depend on the choice of embedding.

Example 3.52. Let Rn → TM → M be the tangent bundle to a manifold, let M → Rn+k be an
embedding, and let Rk → NM→ M be its normal bundle. Then TM⊕ NM ∼= εn+k. So here’s
an example of a bundle which is not trivial but is stably trivial. Consider the tangent bundle
TS2 → S2. It is not trivial: this is the “hairy ball theorem”. Consider an embedding S2 → R3

and its associated normal bundle: it is trivial (the outward-pointing unit normal vector is a
nowhere-vanishing section), and the sum of the two is isomorphic to ε3.

3.3. Homotopical interpretation. Let BU denote the colimit in Top∗ of the maps BU(n)→
BU(n + 1) induced by mapping an isometry f to f ⊕ idC; the basepoints are the identities.
One can prove that Whitney sum endows BU with the structure of a homotopy-commutative
H-group, [Swi75, 11.58]. Therefore, [X, BU] is an abelian group for all X. Similarly, since Z

is an abelian group, then it is in particular a discrete homotopy-commutative H-group, hence
BU ×Z is so too, and [X, BU ×Z] is an abelian group for all X.

Proposition 3.53. If X is a pointed connected compact space, then there is an isomorphism of abelian
groups

K̃(X) ∼= [X, BU]

natural in X.
The contravariant functor K from the homotopy category of compact spaces to abelian groups is

representable by BU ×Z, i.e. there is an isomorphism of abelian groups

K(X) ∼= [X, BU ×Z]

which is natural in X.

PROOF. We define a map T : [X, BU]→ K̃(X). Since X is compact, then a map f : X → BU
factors through a map to some BU(n), by the results in Section 1.5. This is a classifying map to
some vector bundle ξ over X, so we define T[ f ] = {ξ}; you need to check this is well-defined.
Since any vector bundle has a classifying map, T is surjective, and it’s not hard to see it’s
injective. See [AGP02, 9.4.9] for a full proof.

For K(X): if X is connected, this follows immediately from the splitting K(X) ∼= K̃(X)⊕Z,
since then Z ∼= [X, Z]. For non-connected spaces, a bit more work is needed, see [AGP02,
9.4.9]. �

Remark 3.54. The above gives us a purely homotopical criterion for two vector bundles to be
stably equivalent. Namely, if ξ and η are vector bundles over a pointed connected compact
X, then they are stably equivalent if and only if their classifying maps X → BU(n) and X →
BU(m) are such that, when composed with BU(n) → BU and BU(m) → BU, the resulting
maps X → BU are homotopic.

For example (in the real case), given a manifold M and two embeddings into an Euclidean
space as in Example 3.51, if we take their classifying maps M→ BO(r) and M→ BO(s), then
we have the resulting maps M→ BO and they are homotopy equivalent.
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Remark 3.55. Let us denote by [X, Y]∗ the set of pointed homotopy classes of pointed maps.
We have that

K(X) ∼= [X+, BU ×Z]∗

if X is compact, using the adjunction Ho(Top) Ho(Top∗)
(−)+

forget
. From this, we can deduce

that

(3.56) K̃(X) ∼= [X, BU ×Z]∗

if X is compact and well-pointed. Indeed, since (X, x0) is well-pointed, taking the strict cofiber

of S0 = {∗}+
{x0}+−−−→ X+ gives a cofiber sequence S0 → X+ → X. Applying [−, BU ×Z]∗ to it

gives an exact sequence of abelian groups (recall the results from Section 1.6):

[X, BU ×Z]∗ → [X+, BU ×Z]∗ → [S0, BU ×Z]∗.

Now, the second map can be identified with d : K(X)→ Z. Moreover, the first map is injective,
since the previous term in the Puppe sequence is [S1, BU×Z]∗ = π1(BU) = 0, so [X, BU×Z]∗
is the kernel of d, i.e. K̃(X).

One way to see that π1(BU) = 0 is to use the fundamental equivalence G ' ΩBG valid for
any topological group G, plus the fact that U is connected. You can deduce that from the fact
that π0(U(i)) = π0(U) for all i ≥ 1 (as follows from the fiber sequences U(n− 1) → U(n) →
S2n−1, see [Swi75, 11.36]) and π0(U(1)) = π0(S1) = 0.

Remark 3.57. You may be wondering what is [X, BU] if X is not connected. It can be identified
with the abelian subgroup of K(X) consisting of virtual vector bundles whose virtual dimen-
sion is zero over every point, not just over the basepoint. More precisely, there is a function
Vect(X) → [X, N] which takes [ξ] to the function that takes a point to the dimension of the
fiber of ξ over it. It’s a morphism of monoids so it induces a homomorphism K(X) → [X, Z].
Its kernel is the abelian group denoted K̂(X), and is isomorphic to [X, BU]. It coincides with
K̃(X) when X is connected.

Moreover, while we have K̃(X) ∼= E(X), the group K̂(X) satisfies something similar. Let
Vectk(X) denote the monoid of isomorphism classes of complex k-plane vector bundles. Let
Vectk(X) → Vectk+1(X) be the map that takes [ξ] to [ξ ⊕ ε1]. Let Vect(s)(X) = colimkVectk(X).
It is a commutative monoid with the Whitney sum. One can prove that Vect(s)(X) ∼= K̂(X), so
in particular Vect(s)(X) is an abelian group.

See [AGP02, 9.4] for details.

Remark 3.58. The group [X, BU ×Z]∗ exists for all X, not necessarily compact. That’s one
extension of the classical K̃(X) to non-compact spaces X. It’s sometimes called representable
(topological) K-theory, so as to distinguish it from other extensions.

Remark 3.59. Summarizing: Let X be a compact space. Consider a map f : X → BU. If X
is connected and pointed, then by Proposition 3.53 we know it defines an element in K̃(X) ∼=
E(X), so, a stable class of vector bundles over X. It makes sense to call f the (classifying map
of) a stable complex vector bundle. We typically drop the parentheses.

If X is not connected and pointed, the terminology still makes sense by Remark 3.57. Indeed,
we then have that [X, BU] ∼= K̂(X) ∼= Vect(s)(X), and it is also fair to call an element of
Vect(s)(X) a stable complex vector bundle.

Alternatively, by the same remark, a map X → BU classifies a virtual vector bundle of
virtual dimension zero over every point.

In light of (3.56), if BU ×Z were the 0-space of an Ω-spectrum E (or, in other words, an
infinite loop space), then the above says that K̃(X) is E0(X), at least when X is compact.



40 3. GETTING STARTED WITH SPECTRA

Let us now see that this indeed holds.

3.4. As a spectrum. The following is a fundamental theorem. As such, it has many different
but equivalent formulations, and many different proofs, see MO:Proofs of Bott periodicity. A
couple of textbook proofs: [AGP02, 9.5.1] and [MP12, 21.6.1].

Theorem 3.60 (Bott periodicity). There is a homotopy equivalence BU ×Z ' Ω2BU.

Corollary 3.61. There exists an Ω-spectrum KU, called the periodic complex topological K-theory
spectrum, with spaces

KUn =

{
BU ×Z if n is even,

U if n is odd.

PROOF. We need to specify two (weak) homotopy equivalences: BU × Z
∼−→ ΩU and

U ∼−→ Ω(BU ×Z).
For the first one: BU ×Z ' Ω2BU = ΩΩBU ' ΩU.
For the second one: note that loop spaces ΩX only depend on the connected component of

the basepoint X0, i.e. ΩX ∼= ΩX0. So U ' ΩBU ∼= Ω(BU ×Z). �

Therefore, KU defines a cohomology theory KUn(−) : Ho(CW∗) → Ab, n ∈ Z, called
topological K-theory, such that KU0(X) ∼= K̃(X) when X is a finite CW complex. Moreover,
KU2n(X) = KU0(X), and KU2n+1 = KU1(X) = KU0(ΣX). There’s therefore only 2 groups,
really, and they repeat with periodicity 2, hence the periodicity in “Bott periodicity”.

Corollary 3.62. πk(BU) =

{
0 if k = 0 or k is odd,

Z if k > 0 is even
and so πk(BU ×Z) =

{
0 if k is odd,

Z if k is even.

PROOF. We know that π0(BU) = 0, and for k ≥ 1,

πk(BU) ∼= πk(BU ×Z) ∼= πk(Ω2BU) ∼= πk+2(BU),

so the result follows from π2(BU) ∼= π0(BU ×Z) ∼= Z and π1(BU) = 0 which we have seen
above. �

Remark 3.63. The real counterpart to KU is also important. It is denoted KO, and it also follows
from a periodicity theorem of Bott. It states that BO×Z ' Ω8BO: in this case, it’s 8-periodicity.
The homotopy groups of KO from 0 to 7 are Z, Z/2, Z/2, 0, Z, 0, 0, 0.

Seeing a complex vector space as a real one of double the dimension (“realification”) gives
maps U(n) → O(2n), which begets a map U → O and hence BU ×Z→ BO×Z, and finally
a map KU → KO and KU0(X) → KO0(X). Going the other way, there is a “complexification”
map c : KO→ KU which is a Galois extension in a appropriate sense [Rog08, 5.3.1].

Remark 3.64. Let us organize the thoughts above a bit differently. Consider the bijection
Vectn(X) ∼= [X, BU(n)]. Since BU(n) is a connected H-space, then this is also [X, BU(n)]∗
[Hat02, 4A.2]. Applying this to Sk, we see Vectn(Sk) ∼= πk(BU(n)). So, the computation of
the geometric Vectn(Sk) is equated with a computation in homotopy theory, which is doable.
For example, Vectk(S1) ∼= π1(BU(k)) = 0 for k ≥ 1, so we deduce that every complex vector
bundle on S1 is trivial.

We could play the same game over the reals, getting Vectn
R(S1) ∼= π1(BO(k)) ∼= Z/2 for all

n ≥ 1. For example, there are two isomorphism classes of real line bundles over S1, the trivial
one and the Möbius one.

https://mathoverflow.net/questions/8800/proofs-of-bott-periodicity
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3.5. The Hopf invariant 1 problem. Topological K-theory was used in the 50s and 60s to
solve some outstanding problems in algebraic topology, like the Hopf invariant 1 problem, by
Adams. We sketch what this is about, and some of its consequences. An exposition of all this
can be found in [Hat17, 2.3].

Let n > 1 and m > n. Take a map f : Sm → Sn, and take its homotopy cofiber, i.e. attach an
(m + 1)-cell to Sn via f :

Sm Sn

Dm+1 C f

f

y

Now, C f has three cells: one in dimension 0, one in dimension n, and one in dimension m + 1.
Using cellular cohomology, we see that

H̃k(C f ) ∼=
{

Z if k = n, m + 1

0 else.

What about the cup product? Let α be a generator of H̃n(C f ) and β be a generator of H̃m+1(C f ).
By dimension reasons, the only cup product that has the chance of being non-zero is α ∪ α,
and only whenever m + 1 = 2n. The number n should also be even, since if it’s odd, then the
graded-commutativity of the cup product implies that α2 = −α2, i.e. α = 0.

Let’s suppose m + 1 = 2n, so f : S2n−1 → Sn. Define H( f ) ∈ Z to be such that

α ∪ α = H( f )β.

Now, the sign of this number depends on how we choose β, but we can specify β in a way that
doesn’t make any choices, so H( f ) is well-defined.

If f ' g, then H( f ) = H(g), so we get a function H : [S2n−1, Sn] → Ab. Since Sn is simply
connected, then [S2n−1, Sn] ∼= π2n−1(Sn)8. And in fact, one can prove [Hat02, 4B.1] that

H : π2n−1(Sn)→ Ab

is a homomorphism.
This is a homotopy invariant, so it may be useful for determining whether two maps

S2n−1 → Sn are not homotopical: it suffices to compute their Hopf invariant and see that it’s
not the same. Computing homotopy groups is hard, so any tool is welcome. Now, here’s a
question, the famous “Hopf invariant one” question:

Does there exists an f with H( f ) = 1?

Theorem 3.65 (Adams, 1960). There exists an f with H( f ) = 1 if and only if n = 2, 4, 8.

PROOF. Adams’ original proof was long and used the complicated theory of secondary
cohomological operations, but later Adams and Atiyah (1966) gave a new proof, much shorter,
that uses topological K-theory (and its primary cohomological operations), see [Hat17, 2.3] or
[AGP02, 10.6]. It uses a different definition of the Hopf invariant, actually, that directly appeals
to K-theory instead of to integral cohomology. �

The maps with Hopf invariant one are the following. First, there is the Hopf map f : S3 →
S2 = CP1. Its mapping cone is the complex projective space C f = CP2. We can compute its

8This is not the definition of πn, since recall that in this section [X, Y] denotes unpointed homotopy classes.
This is an exercise, but see [Hat02, 4A.2] for an interesting general statement.
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cohomology ring, it’s H∗(CP2) = Z[α]/α3, |α| = 2: this is a fundamental computation, see
[Hat02, 3.19] or [Swi75, 15.33]. 9

The other two maps are analogous, only using the quaternions H, i.e. a map S7 → S4 =

HP1, and the octonions O, i.e. a map S15 → S8 = OP1. You probably know the quaternions
from your algebra class, they form a non-commutative algebra over R of dimension 4. The
octonions are a bit more exotic because they are not even associative; they have dimension 8.
The constructions of the three maps are in [Hat02, 4.45, 4.46, 4.47], they are all known as “Hopf
fibrations”.

Here are some interesting consequences, proofs of which you can find in [Hat17], see also
[AGP02, 10.6] for more information on the relation between these statements and their history.

(1) Rn is an R-algebra with division only when n = 1, 2, 4, 8. This purely algebraic ques-
tion had been asked around the year 1900.

(2) Sn is an H-space only when n = 0, 1, 3, 7.
(3) Sn is parallelizable only when n = 0, 1, 3, 7, i.e. the tangent bundle to Sn is trivial only

in those cases, i.e. Sn admits n vector fields linearly independent in each point only in
those cases.

(4) The only fiber bundles where base space, total space and fiber are spheres are the three
ones above, plus the real one S0 → S1 a−→ S1 = RP1 where a is the antipodal map,
seeing S1 ⊆ R2.

The fairly easy relations between all these statements can be found in [AGP02, 10.5].

Remark 3.66. When n is even, for any even number d there exists an f with H( f ) = d. See
[Hat02, Page 428]. As a corollary, since H is a homomorphism of groups, then an f with H( f ) =
2 generates an infinite cyclic subgroup, so π2n−1(Sn) contains a copy of Z as a summand.

9As a commentary, the K-theory is the same [Hat17, 2.24]... both KU and HZ are complex-oriented cohomology
theories, see MO:Motivation for complex orientable, where motivation and bibliography pointers are given. This is
the starting point for a very deep theory.

https://mathoverflow.net/questions/383687/motivation-for-the-definition-of-complex-orientable-cohomology-theory


CHAPTER 4

The homotopy theory of spectra

1. Localizations of categories with weak equivalences

I explained before that there are diferent notions of spectra, all equivalent in a homotopy-
theoretical sense. I made a choice when I settled for a particular version. We reach here a
similar point in the theory. Just as “what is a spectrum?” admits several answers, the question
“what is a homotopy theory?” also does. The simplest answer is: a category C together with a
class of morphisms W called weak equivalences (which “somewhat resemble isomorphisms but
fail to be invertible in any reasonable sense, and might in fact not even be reversible: that is
the presence of a weak equivalence X ∼−→ Y need not imply the presence of a weak equivalence
Y ∼−→ X”, to copy the words of Riehl [Rie19]).1 There is a formal procedure to invert those
arrows, getting a category C[W−1], the localization of C at W (think of the localization of a ring
at a multiplicative subset). You might want to think of that as the “homotopy category” of C,
though the terminology is a bit abusive as there is no notion of homotopy between maps here.

Proposition 4.1. Let C be a category and W be a class of morphisms in C called “weak equivalences”.
There exists a (not necessarily locally-small2) category C[W−1] and a functor ι : C→ C[W−1] such that:
ι sends the maps in W to isomorphisms; if C→ D is a functor that sends W to isomorphisms, then there
exists a unique functor making the following diagram commute

C

ι

��

// D

C[W−1].

;;

This implies that C[W−1] is the unique category with a functor from C satisfying the above two properties,
up to a unique isomorphism of categories making the obvious triangle commute.

Isomorphisms of categories can be characterized as follows: F : C→ D is an isomorphism
of categories if and only if it is fully faithful and bijective on objects.

Side remark 4.2 (For category theory amateurs). You may be worrying about two things in the
previous proposition. One is: this universal property says only that

Fun(C[W−1],D)
ι∗−→ Fun∼7→∼=(C,D)

is an isomorphism of sets, where the right-hand side means functors which send weak equiv-
alences to isomorphisms... But these are categories; you may want ι∗ to be an isomorphism
of categories. This is automatic MO:74955. Moreover, you may worry that this is too strict,
and that we should require that ι∗ just be an equivalence of categories, which would give e.g.
that C[W−1] is unique only up to equivalence, and which would say that the dotted functor is
unique only up to natural isomorphism. See MO:312118.

1Some authors require more axioms, like W being a subcategory containing all objects, or the weak equivalences
satisfying the 2-out-of-3 property.

2This means that the “hom-sets” may actually be “hom-classes”.
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https://mathoverflow.net/questions/74955/
https://mathoverflow.net/questions/312118/what-is-the-correct-definition-of-localisation-of-a-category
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Think of the construction of localization of rings, which satisfies an analogous universal
property. If the ring R is commutative and S is a multiplicative subset, we can define S−1R to
consist of symbols rs−1, s ∈ S, r ∈ R, subject to some relations. If R is not commutative, it’s
not that simple, because r0s−1

0 r1s−1
1 is not necessarily of the form rs−1... so if we define S−1R

to be the sums of sequences of the form r0s−1
0 r1s−1

1 r2s−1
2 · · · . In our case, we will need to do

something similar.

PROOF. We will give an explicit description of C[W−1].
The objects of C[W−1] are the same as those of C. For the arrows, we take finite strings of

arrows of C or of formal inverses of arrows of W: these are “zig-zags” that we can represent
like this

X X1
∼
oo // X2 X3

∼
oo · · ·∼

oo // Xn // Y

where ∼ signals that an arrow is in W. Any given object of C may appear in the zig-zag, and
the objects of C may form a proper class (not a set), which explains why C[W−1] may not be
localy small. We impose on these zig-zags the equivalence relation generated by the following:

(1) Compose two adjacent maps pointing to the right,
(2) Remove any identity map pointing to the right,

(3) Remove any Y X∼
f

oo
∼
f
// Y or X ∼

f
// Y X∼

f
oo .

Composition of (equivalence classes of) zig-zags is given by concatenation. The identity is the
empty zig-zag. The functor ι : C→ C[W−1] maps X → Y to X → Y. The functor ι sends weak

equivalences to isomorphisms: if f : X ∼−→ Y, its inverse in C[W−1] is Y
f←− X. Rewriting it as

Y id−→ Y
f←− X, we can think of it as 1/ f ; more generally, we can think of X

g−→ Y
f←− Z as the

quotient g/ f .
If F : C → D is another functor that inverts the weak equivalences, then define F̃ :

C[W−1] → D as follows. Since any zig-zag is a composition of unary zig-zags, it suffices
to define F̃ on single arrows pointing to the right or to the left. Define F̃(X → Y) as F(X → Y),
and F̃(Y ∼←− X) as F(X → Y)−1; this respects the relations so does define a functor F̃.

If G : C[W−1]→ D is another functor that extends F, then it has to coincide with F̃. Indeed,
they coincide on objects and on right-pointing arrows. As for left-pointing arrows, this follows
immediately from property (3) above. �

Proposition 4.3. Let C and D be categories with classes of weak equivalences W and W′ respectively. If
F : C→ D preserves weak equivalences, then there is a unique induced functor F̃ : C[W−1]→ D[W′−1],
the (total) derived functor of F, that makes the following diagram commute.

C
F

//

ι

��

D

ι

��

C[W−1]
F̃
// D[W′−1].

If F has a right adjoint G that also preserves weak equivalences, then (F̃, G̃) is an adjoint pair. If
moreover the unit X → GFX and the counit FGY → Y of (F, G) are weak equivalences, then (F̃, G̃) is
an equivalence.

PROOF. Define F̃ by applying F to every term of the zig-zag pointing to the right, and by
taking F(−)−1 on every term pointing to the left. To see that this is the unique functor fitting in
the above commutative diagram, first note that by this commutativity it has to send a simple

zig-zag f : X → Y to F f : FX → FY. Considering the zig-zag X id−→ X ∼←− Y, we see that
zig-zags X ∼←− Y have to be sent to FX ∼←− FY. By further composing these, we get the result.
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The additional adjunction properties are similarly easily proved. �

Example 4.4. In this example, Ho(C) means the category with the same objects as C, and
with maps given by homotopy classes of maps (in the examples below, we have a notion of
homotopy).

(1) Let C = Top, W = the class of homotopy equivalences. Then it’s not hard to prove that
Top[W−1] ∼= Ho(Top) (isomorphism of categories). The key thing to observe, and we
isolate it in a remark because it will be useful in the future, is that:

Remark 4.5. A functor F : Top→ D takes homotopy equivalences to isomorphisms if
and only if it takes homotopical maps to equal maps, as follows from considering the

following diagram: X X× I YH
i0

i1

∼ .

(2) C = Top, W = the class of weak homotopy equivalences. If X is not of the homotopy
type of a CW-complex and you take a CW-approximation QX ∼−→ X, then [X, Y] 6∼=
[QX, Y]. In this example, it’s the latter that appears as a hom.

Indeed, Top[W−1] ' Ho(CW) (equivalence of categories), essentially by CW-
approximation and Whitehead’s theorem. As a technical point, note that here it’s
an equivalence of categories but in the previous example it was an isomorphism of
categories. If you want a similar isomorphism as above in this example, you should
take H to be the category with all spaces as objects, and arrows from X to Y to be
[QX, QY]. Then Top[W−1] ∼= H. 3

(3) C = Ch≥0
R be the category of (homologically graded) non-negative chain complexes

over a ring R. We can take homotopy equivalences as W, in which case Ch≥0
R [W−1] ∼=

Ho(Ch≥0
R ) is sometimes denoted K(R) and called “the homotopy category of R” in

homological algebra circles.
(4) C = Ch≥0

R again, and W is the class of quasi-isomorphisms. Then Ch≥0
R [W−1] '

Ho(Chproj,≥0
R ) = D(R), the derived category of R, where proj denotes complexes of

projective modules.

Remark 4.6. (1) In the previous chapter, we used Ho(Top) to mean the usage in 1 above.
But many people prefer to use it to mean what we have in 2 above. Perhaps the most
fundamental reason to prefer that one is that it’s equivalent to the standard homotopy
category of simplicial sets. The usefulness of this is hard to overstress...

(2) Examples 1 and 3 above are very similar to each other, and examples 2 and 4 as
well. For an exposition of the four model structures associated to these examples that
highlights their similarities, see [MP12, Chapters 17 and 18].

Exercise 4.7. In the context of the proposition above, prove that if F has a right adjoint G which also
preserves weak equivalences, then (F̃, G̃) is an adjunction. Moreover, if the unit and the counit of (F, G)

are weak equivalences, then (F̃, G̃) is an adjoint equivalence.

2. Different approaches to homotopy theory

The approach to homotopy theory of Section 1 is sufficient, see [BK12]; it is also the most
economical. It has several disadvantages if one wants to work with it, though. One of them
is that the hom-classes in C[W−1] are a bit unwieldy and we should be careful not to run into
set-theoretical paradoxes. This is inconvenient.

3In practice we shall never take advantage of the fact that you can build such “homotopy categories” which are
isomorphic to the localization: equivalence is what we really care about. But if you’re interested, you should know
that what I just said is general and works in any model category C: see [Rie19, 3.4.4, 3.4.5].
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Moreover, while any morphism in C trivially gives a morphism in C[W−1], there are some
morphisms in C[W−1] that may be hard to describe. You may be able to get an explicit zig-zag
that describes it, all right. But there are some morphisms that are bound to be hard to describe
like that: zig-zags may be very long.

In the case of localization of noncommutative rings, there are conditions such as the Ore
condition which guarantee that elements in S−1R can be represented as rs−1 instead of as infinite
chains. Similarly, those of you familiar with derived categories may know of the calculus of
fractions of Gabriel–Zisman, which is analogous to that. If W ⊆ C admits such a calculus, then
the zig-zags in the homsets of the homotopy category can be drastically shortened: one arrow
to the right followed by one to the left, where the arrows going to the left are weak equivalences.

Around the same time the model categories4 of Quillen were introduced [DS95], [Hov99],
[MP12]. These introduce extra structure: additionally to the weak equivalences, it is necessary
to specify a class of cofibrations and a class of fibrations, subject to a bunch of axioms. Proving
that something is a model category takes a bit of work, but then you get for free some very
useful results which are valid in any model category. Here, the zigzags in HomC[W−1](X, Y) can
be greatly shortened: we only need

X QX∼
oo // RY Y.∼

oo

(This is not a calculus of fractions but a 3-arrow calculus, see [DHKS04, I.3.2], [BK13] for details.)
Moreover: there is a notion of homotopy between maps, and, above, HomC[W−1](X, Y) can

also be presented as the set of maps QX → RY up to homotopy. Here QX is “cofibrant” and the
weak equivalence QX → X is a “cofibrant approximation”; dually, RY is “fibrant” and Y → RY
is a “fibrant approximation”.

This recovers e.g. the traditional homotopy category of spaces (where we can omit both Q
and R: a most rare occurrence in model category theory). The approach of Section 1 is rather
formal, categorical, whereas this one starts to feel more like homotopy theory.

Model categories present additional advantages: for example, it is reasonably simple to
produce a theory of derived functors, which generalizes their homological algebra counterpart.
The problem here is that there are many interesting functors between categories with weak
equivalences which do not preserve them, so it’s not obvious how to use Proposition 4.3 to
build the induced functor on homotopy categories. Think of the tensor product with a fixed
module, between categories of chain complexes.

Model categories also have disadvantages. For example, categories of functors to a model
category cannot be endowed with sensible model structures in full generality, which compli-
cates a bit the development of the theory of homotopy (co)limits. One fix for that is given
by the homotopical categories of [DHKS04], see also [Shu06]. These are categories with weak
equivalences satisfying a couple of mild axioms, which prove to be enough for a surprising
amount of things... but which still have the problem of hom-sets consisting of zig-zags. It’s
better to be eclectic.

Side remark 4.8. There is another family of approaches to the notion of “homotopy theory”,
which does not rely on specifying a class of weak equivalences. It grows from a different
observation: in the category of spaces, you have maps of spaces, but also maps between maps
of spaces (homotopies), and homotopies between homotopies, and so on, and all of these
homotopies are invertible. Spaces are thus the prototype of an (∞, 1)-category, similarly to how

4Full name: category of models for a homotopy theory.
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Set is the prototypical 1-category, and an (∞, 1)-category can be thought of as “a homotopy
theory”.

Again, there are many incarnations of what is an (∞, 1)-category: categories enriched in
simplicial sets, or in topological spaces, are pretty strict (or “algebraic”) models, whereas other
models are more flexible (or “geometric”), e.g. complete Segal spaces or quasicategories, called
simply ∞-categories by Lurie. See e.g. the surveys [AC16] or [Rie19].

We will not delve further on these important issues of abstract homotopy theory, because
in this course we are focusing on one homotopy theory: that of spectra. Therefore, we have
chosen not to develop any of the above approaches to abstract homotopy theory. The model-
categorical one, though, will be lingering in the background. We shall make passing allusions
to it, which you can ignore if you don’t find them illuminating.

3. First definition of the stable homotopy category

Consider examples 2 and 4 of Example 4.4. In both of those localized categories, the hom-
sets are given by [QX, Y], where Q either means CW-approximation or projective resolution.
In other words, to get maps from X, if X is not already a CW-complex or a projective chain
complex, I need to approximate it by one, and then take homotopy classes of maps out of it.

For spectra, we will follow a similar path. We have defined maps of spectra X → Y. We will
now define weak equivalences – so the homotopy category of spectra can be defined as Sp[W−1],
i.e. the maps in it are zig-zags. We will define cofibrant spectra (analogous to “CW-complex”
in spaces or to “projective” in chain complexes) and fibrant spectra (in the spaces and chain
complexes examples above, every object is fibrant, so this complication is non-existent); every
spectrum will have a weak equivalence from/to a co/fibrant spectrum; and HomSp[W−1](X, Y)
will be bijective to the homotopy classes of maps between these approximations.

We now define the “weak equivalences” of spectra. These are defined similarly as weak
homotopy equivalences of spaces or quasi-isomorphisms of chain complexes5. So we first need
to define homotopy groups of spectra: note that these are defined for any integer, not only for
the non-negative ones!

Definition 4.9. Let k ∈ Z and X be a spectrum. Define

πk(X) = colimiπk+i(Xi).

More explicitly, one step in this sequence is given by the map

πk+i(Xi)→ πk+i+1(ΣXi)
(ρi)∗−−→ πk+i+1(Xi+1)

where the first map is obtained by suspension and the second one from the structure map.
Equivalently, if η is the unit of the (Σ, Ω) adjunction in pointed spaces, then the first map is
given by πk+i(Xi)

η∗−→ πk+i(ΩΣXi) ∼= πk+i+1(ΣXi). Yet another description: it is the composi-

tion πk+i(Xi)
(ρ̃i)∗−−→ πk+i(ΩXi+1) ∼= πk+i+1(Xi+i).

This definition readily extends to a functor πk : Sp→ Ab.

Go to Table 1 to see all of these homotopy groups and maps between them in a table.

5They’re actually closer to the later, in the sense that, as we will see in a moment, they are both of the form “the
class of maps that gets inverted by a certain functor from your category”. It would be great to say the same thing is
true for homotopy groups of spaces, but you have to take all basepoints when your spaces are not connected!
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TABLE 1. Homotopy groups of a spectrum

X0 X1 X2 X3

π0 π0(X0) π0(X1) π0(X2) π0(X3)

π1 π1(X0) π1(X1) π1(X2) π1(X3) π−3(X)

π2 π2(X0) π2(X1) π2(X2) π2(X3) π−2(X)

π3 π3(X0) π3(X1) π3(X2) π3(X3) π−1(X)

π3(X) π2(X) π1(X) π0X

Definition 4.10. We say that a spectrum X is connective6 if all its negative homotopy groups
vanish.

Example 4.11. Let k ∈ Z and X a pointed space. Then

πk(Σ∞X) =

{
πs

k(X) if k ≥ 0

0 if k < 0

by definition in the k ≥ 0 case, and by the higher connectivity properties of iterated suspensions
in the k < 0 case. Therefore, suspension spectra are connective.

In particular, the sphere spectrum S is connective and its positive homotopy groups πk(S) =

πs
k(S

0) are the stable stems, discussed in Section 2.1.

Exercise 4.12. Prove that πk(X×Y) ∼= πk(X)× πk(Y).

Remark 4.13. If X is an Ω-spectrum, then in the sequence defining its homotopy groups, all
the maps are isomorphisms: if k ≥ 0, then,

πk(X) = colim( πk(X0)
∼=
// πk+1(X1)

∼=
// πk+2(X2)

∼=
// · · · )

whereas for −k ≤ 0, we need to start the sequence later than at X0 (because negative homotopy
groups of spaces don’t exist):

π−k(X) = colim( π0(Xk)
∼=
// π1(Xk+1)

∼=
// π2(Xk+2)

∼=
// · · · ).

In conclusion, the canonical map π−k+n(Xn)
∼=−→ π−k(X) is an isomorphism for all n ≥ 0

such that −k + n ≥ 0, which is natural in X. In Table 1, all the groups of the same color are
isomorphic.

Example 4.14. The homotopy groups of the Eilenberg–Mac Lane spectrum HG of an abelian
group G are given by:

πn(HG) =

{
G if n = 0

0 if n 6= 0.

Side remark 4.15. Loop spaces are examples of grouplike A∞-spaces (Side remark 2.10), also
known as E1-groups. Double loop spaces are examples of E2-groups: that is, E1 plus homotopy-
commutativity. Higher loop spaces are examples of En-groups: they are homotopy-commutative
in a structured way, up to degree n.

Think of monoidal categories: you have plain monoidal categories, braided monoidal
categories, then symmetric monoidal categories: after that, it stabilizes, there is nothing “more
commutative” than symmetric monoidality.

Here, there is no stabilization, only an ever-greater degree of commutativity... up to infinity.
Infinite loop spaces, as defined above, are examples of E∞-groups. In the previous remark, we

6This is not a typo. We do not mean “connected”. If we were to use the terminology of connectedness, then
“connective” corresponds to (−1)-connected, which is a bit of a moutfhul, hence the alternative term for it.
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saw that X is pretty close to X0, at least if X is connective. Indeed, the homotopy groups of the
former are the stable homotopy groups of the latter. Much more is true: once we look at X0 not
only as a space but as an E∞-group, then it is actually capturing all the homotopical information
of the connective spectrum X. A bit more precisely, taking the 0-space of a connective spectrum
establishes an equivalence (in a homotopical sense) between them and E∞-groups. This is a
very important recognition theorem, but it takes a fair amount of technology to even get a
formal statement (see e.g. [Lur17, 5.2.6.26], or [Ada78, 2.3.2] for a more leisurely and classical
treatment), so we shall not study it in this course. There are similar recognition theorems for
En-groups as iterated loop spaces.

Definition 4.16. A map f : X → Y of spectra is an equivalence (or “weak equivalence”, or
“stable equivalence”) if it induces an isomorphism in all homotopy groups.

If we denote by W the class of weak equivalences in Sp, then we have a category Sp[W−1]

as per Proposition 4.1. This is the homotopy category of spectra, also known as the stable homotopy
category.

We say that X is equivalent to Y and we write X ' Y if X is isomorphic to Y in Sp[W−1], i.e.
there exists a zig-zag of weak equivalences between X and Y.

Example 4.17. Let p ∈ Z. Take a degree p map f : S1 → S1, and consider its suspensions
Σn f : Sn → Sn for all n ≥ 0. Since the suspensions of f are also of degree p (check!), we would
like to say that we have defined a map S→ S of degree p. But we haven’t defined it in level 0,
and there is no way to extend what we have defined to degree 0. So with our definition of a
morphism, we are not capturing this very elementary one. Similarly, we would like the Hopf
map S3 → S2 to induce a map ΣS → S, but this map is not the suspension of a map S2 → S1

(those are all nullhomotopic).

Here’s one way to solve this problem:

Example 4.18. Let X and Y be spectra and f : X → Y be a map of spectra. If fn is a weak
homotopy equivalence for all large enough n, then f is a stable equivalence.

In particular, let k ≥ 0 and define X′ as having ∗ in levels ≤ k− 1, and having Xi in levels
i ≥ k, with structure maps coming from those of X. Then the obvious map X′ → X is a stable
equivalence (see remark Remark 4.19).

This shows that when defining a spectrum, only what happens “from a certain point on” is
important, up to stable equivalence.7

This gives a first solution to the problem in Example 4.17: let S′ be the truncation as above,
where k = 1. We can define a map p : S′ → S′ “of degree p” as in that example. Then
S
∼←− S′

p−→ S′
∼−→ S is a “degree p” map S→ S in Sp[W−1].

Remark 4.19. We just used the easy fact that if there exists an N ≥ 0 such that fn : Xn → Yn is
a weak equivalence for all n ≥ N, then f is a weak equivalence.8 A map f : X → Y of spectra
is a level equivalence9 if fn : Xn → Yn is a weak equivalence for all n ≥ 0. A level equivalence is
a stable equivalence, and the example above proves that the converse doesn’t hold in general.

Proposition 4.20. Let f : X → Y be a map between Ω-spectra. If f is a stable equivalence, then it is a
level equivalence.

PROOF. This follows immediately from Remark 4.13. �

7It also shows why our definition of a spectrum is equivalent to the definition of other authors that use Xn for
negative n as well.

8We can generalize this to a cofinal subsequence of N.
9This is not a genuinely interesting notion, but useful for some developments of the theory.
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Remark 4.21. As we said in Section 2, the model-categorical approach to homotopy theory will
be lurking in the background. The statement which we won’t formally state nor prove is: there
is a model category structure on Sp with weak equivalences given by the stable equivalences.
The fibrations will be levelwise Serre fibrations, and the cofibrations will be retracts of relative
cell spectra. The fibrant objects are the Ω-spectra, and the cofibrant objects are retracts of cell
spectra: this will be explained below. This model structure was first established for spectra
of simplicial sets in [BF78], see also [GJ99, X.4]. The topological version was made explicit in
[MMSS01, 9.2], and is exposed in lush detail in nLab:model struture on topological sequential
spectra.

4. Fibrant replacement

To understand why Ω-spectra will be useful in solving the problem from Example 4.17,
suppose we have a spectrum X, an Ω-spectrum Y, and maps fk : Xk → Yk defined for k ≥ 1
and which are compatible with the structure maps. Consider the zig-zag

X0

��

Y0

∼
��

ΩX1 Ω f1

// ΩY1

If Y0 → ΩY1 were an actual homeomorphism, then we would have an actual map f0 : X0 → Y0,
and thus an actual map of spectra X → Y. This is the approach taken by Peter May, see e.g.
[LMSM86, Preamble]. Our Ω-spectra are weaker10, so in order to fully solve this problem we
need to work a bit more. We will come back to this in Example 4.26 and Remark 4.60.

Definition 4.22. Define a functor R : Sp→ Sp with values in Ω-spectra as follows. Let (RX)n

be the telescope (homotopy colimit; see Section 1.5) of the sequence

Xn → ΩXn+1 → Ω2Xn+2 → · · ·

taken over the loops of the transposes of the structure maps ΣXn → Xn+1. The transpose
structure maps are:

(RX)n = hocolim(Xn → ΩXn+1 → Ω2Xn+2 → · · · )
' hocolim(ΩXn+1 → Ω2Xn+2 → · · · )
∼−→ Ωhocolim(Xn+1 → Xn+2 → · · · )
= Ω(RX)n+1

where the first ' is a homotopy equivalence11, and where the universal map from the tele-
scope is a weak homotopy equivalence since homotopy groups take telescopes to colimits (see
Section 1.5).

Remark 4.23. Compare to the definition of QY for a based space Y: the natural map (RΣ∞Y)n →
QΣnY is a weak homotopy equivalence; remark that QΣnY is defined by the strict colimit in-
stead of the homotopy colimit. In particular, we have a weak homotopy equivalence (RΣ∞Y)0 →
QX.

10And as a result, our functor R below is much simpler than May et al’s spectrification functor L which turns a
spectrum into an equivalent Ω-spectrum with homeomorphisms as structure maps.

11Possibly killing a mosquito with a sledgehammer, this is an application of the homotopy cofinality theorem
[MV15, 8.6.5], see also [Dug08, Section 6].

https://ncatlab.org/nlab/show/model+structure+on+topological+sequential+spectra
https://ncatlab.org/nlab/show/model+structure+on+topological+sequential+spectra
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Going more general than suspension spectra, then unlike in the definition of QY, we really
need to take the telescope in the construction of R if we want homotopy groups to commute,
since the maps Xn → ΩXn+1 are not closed inclusions, in general.

Following Remark 3.19, Ω∞(RX) = (RX)0 is an infinite loop space.

Now, RX is not just any Ω-spectrum: it is an Ω-spectrum replacement of X, in the sense that:

Proposition 4.24. Let X be a spectrum. There is a natural equivalence X → RX.

PROOF. First, note that Xn is homotopy equivalent to the telescope of the constant sequence

Xn
id−→ Xn

id−→ · · · . Define a map Xn → (RX)n by taking the telescope of the following commu-
tative ladder:

Xn
id

//

id
��

Xn

ρ̃n

��

id
// Xn

Ωρ̃n+1◦ρ̃n
��

id
// · · ·

Xn
ρ̃n

// ΩXn+1 Ωρ̃n+1

// Ω2Xn+2 // · · ·

where ρ̃n denote the transpose structure maps. It assembles to a map of spectra X → RX
(check!), which is a weak equivalence by a “colimits commute with colimits” argument:

πk(RX) = colimiπk+i((RX)i)

∼= colimicolimjπk+i+j(Xi+j)

∼= colimjcolimiπk+i+j(Xi+j)

∼= colimjπk(X) ∼= πk(X). �

The functor R is our fibrant replacement functor, and Ω-spectra can equivalently be called
fibrant spectra.

Corollary 4.25. The functor R takes weak equivalences to weak equivalences.

PROOF. Follows from the 2-out-of-3 property of weak equivalences, and naturality of X →
RX. �

Example 4.26. Let us see how this fibrant replacement helps us fix the problem from Exam-
ple 4.17. Let’s concentrate on the Hopf map for simplicity. We will define a map η : RΣS→ RS

which can be thought of as the Hopf map at the level of sphere spectra.
Define the map (RΣS)0 → (RS)0 as the homotopy colimit of the following vertical maps:

S1 ΩS2 Ω2S3 Ω3S4 · · ·

S0 ΩS1 Ω2S2 Ω3S3 · · ·

Ω2h Ω3Σh

where h : S3 → S2 is the Hopf fibration. Define (RΣS)n → (RS)n similarly for n ≥ 1. Note in
n = 1 you can start the vertical maps from the second column, and from n = 2 you can already
define them in all the columns. You can check it commutes with the structure maps, and so this
defines the map η. From a categorical point of view, the key thing that has helped us solve the
problem was the fact that to define a map between homotopy colimits, you may define them
just from a certain point on.

Note this is a general procedure: if X and Y are spectra and fn : Xn → Yn for n ≥ k > 0
is a compatible set of maps, then they can be used to define a map of spectra RX → RY. We
therefore have a zig-zag X ∼−→ RX → RY ∼←− Y.

How does this zig-zag compare to the one from Example 4.18? They are equivalent, in
the sense that we can build a natural map of spectra X′ → RX which is the inclusion of the
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basepoint ∗ → (RX)n in low degrees and is the map Xn → (RX)n constructed above in high
degrees. We get a commutative diagram

X X′ Y′ Y

X RX RY Y∼∼

∼∼

∼ ∼ ∼ ∼

where the vertical maps are weak equivalences, so the zig-zags are equivalent.

5. Cofibrant replacement

CW-complexes are very useful. The fact that they are defined in an inductive fashion is of
practical help in many arguments; also, weak homotopy equivalences between CW-complexes
are homotopy equivalences (Whitehead’s theorem).

In spectra, we can make an analogous definition, and it plays an similar role.12 First, a little
caveat: we can be somewhat more general than CW-complexes and still have some of the same
nice properties. We can do that in spaces, too. Here’s the general definition:

Definition 4.27. Let C be a cocomplete category. Let J be a set of maps in C, called cells and
often omitted from the notation. A J -cell complex is an object gotten as a colimit of a (possibly
transfinite13) sequence of maps

∅ = X(−1) // X(0) // X(1) // X(2) // · · ·

where ∅ denotes the initial object, and each of the maps X(j) → X(j+1) is a pushout⊔
i Si

��

//
⊔

i Di

��

X(j−1) // X(j)

where the Si → Di are in J . In words: we build the X(j) inductively, starting with the initial
object, and building X(j) from X(j−1) by gluing a bunch of cells S → D via attaching maps
S→ X(j−1).

If A ∈ C, a relative J -cell complex A → X is defined as above, but replacing X(−1) by A.
Note that A can be any object, it is not gotten by attaching cells.

Remark 4.28. (1) A cell complex is a relative cell complex of the form ∅→ X.
(2) We could define a cell complex by attaching one cell at a time, instead of several, thus

eliminating the coproducts from the definition; see [MP12, 15.1.3].14

(3) We can choose to stop at a given stage: reach only up to X(n) and then stop attaching.

Example 4.29. For the most trivial example, note that if S → D is a cell, then S → D is a
relative cell complex, where we have attached only one cell to S in order to get D. More
generally,

⊔
i Si →

⊔
i Di is a relative cell complex.

Example 4.30. Let C = Top, and take the cells to be the inclusion of spheres as boundaries of
disks: {Sk−1 → Dk : k ≥ 0}, where S−1 → D0 is ∅ → ∗. A cell complex is a CW-complex if

12As in any cofibrantly generated model category.
13You can ignore this for now if you don’t know what it means.
14To quote the authors: “Using coproducts in the definition keeps us closer to classical cell theory, minimizes

the need for set theoretic arguments, and prescribes J -cell complexes in the form that they actually appear in all
versions of the small object argument.”
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we restrict to attaching only cells Sj−1 → Dj of dimension j at stage j,15 i.e. the pushout above
rather looks like ⊔

i Sj−1

��

//
⊔

i Dj

��

X(j−1) // X(j)

In this case, X(0) consists of a bunch of points, then in X(1) we have glued some intervals by the
endpoints to those points, then in X(2) we add some disks, etc., and then we take the colimit
(the union). Note that CW-complexes do not make sense for a general J as “dimension” does
not make sense.

Relative cell complexes are, in particular, Hurewicz cofibrations.16

In the case of C = Top∗, we can do the same as above with the cells {Sk−1
+ → Dk

+ : k ≥ 0},
getting pointed cell complexes. Note in this case the coproducts are wedges.

The Whitehead theorem, i.e. a map between CW-complexes is a weak equivalence iff it is a
homotopy equivalence, generalizes to relative cell complexes in spaces, pointed or not.

Remark 4.31. One advantage of CW-complexes over general cell complexes is the possibility
of doing induction arguments involving dimension. In cell complexes, the order in which
we attach cells is, a priori, arbitrary, so we cannot mimic the induction arguments from CW
complexes that depend on stage j having only cells of dimension at most j. Some induction
arguments, those that do not depend on the dimension of cells, can still be carried out. Cellular
homology is also only possible with CW-complexes.

Remark 4.32. In Top∗, consider the cells given by {Sk−1 → Dk : k ≥ 1}, where the sphere and
the disk have been endowed with basepoints and the inclusions are basepoint-preserving. This
would seem to be a more natural choice of cells, but if you stop and inspect what kind of spaces
you get, you’ll see you only get connected ones.

We will now introduce cell spectra, but first we need a definition.

Definition 4.33. If Y is a space and d ≥ 0, we denote by Σ∞−d
+ (Y) the spectrum sh−dΣ∞

+(Y),
and similarly for pointed spaces, without the +.

In other words, Σ∞−d(Y) is the spectrum which has ∗ in degrees 0 ≤ k < d, and then has Y,
ΣY, etc. Note that Σ∞−d : Top∗ → Sp is a functor, and it is a left adjoint: its right adjoint is the
functor Ω∞−d : Sp→ Top∗, the d-space functor, which makes X to Xd.

The Σ∞−d notation is justified because sh ' Σ, as we shall see in Chapter 5. There, we will
also see that (Σ, Ω) is an adjoint equivalence in Sp, in a homotopical sense.

Example 4.34. Let C = Sp, and define a cell of dimension j ∈ Z to be a map

Σ∞−n
+ Sn+j−1 → Σ∞−n

+ Dn+j,

where n + j ≥ 0. The additional index and the shifts back and forth (see Remark 5.3) are there
to allow cells of negative dimension. We thus get the notions of cell spectrum and relative cell
spectrum.

15For an example of a cell complex without a CW-complex structure, see MO:23415. On the other hand, every
cell complex is homotopy-equivalent to a CW-complex.

16An elementary proof for the fact that relative CW-complexes are Hurewicz cofibrations can be found in
[May99a, Page 75]. A proof of the general case can probably be made in a similar fashion, or I can take out the big
guns if you allow me: we know that homotopy equivalences are weak equivalences, and that Hurewicz fibrations
are Serre fibrations; this means that id : TopStrom → TopQuillen is a right Quillen functor; in particular, its left adjoint
id : TopQuillen → TopStrom is left Quillen, so it takes cofibrations to cofibrations.

https://mathoverflow.net/a/23425/6249
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Note that, if j ≥ 0, then Dn+j ∼= ΣnDj. So, cells of dimension j ≥ 0 can be gotten by
considering the space cell Sj−1 → Dj, then applying Σn for some n ≥ 0, then applying Σ∞−n

+ .
Equivalently, you start with the cell Sj+n−1 → Dj+n and apply Σ∞−n

+ .
For negative j, you pick an n large enough so that n + j ≥ 0, start with Sn+j−1 → Dn+j, then

apply Σ∞−n
+ to it.

Considering the set of all these cells, we get the notion of a cell spectrum.

Here is a property which gives an alternative definition of a cell spectrum.17

Proposition 4.35. A spectrum X is a cell spectrum if and only if all the structure maps ΣXn → Xn+1

as well as ∗ → X0 are relative cell complexes (of pointed spaces).

PROOF. (⇒) First, note that each cell Σ∞−n
+ Sn+j−1 → Σ∞−n

+ Dn+j is such that each of its
component maps is a relative cell complex. Indeed, the component maps are either ∗ → ∗
or Sk

+ → Dk+1
+ . Now, you can see that this is preserved by taking pushouts, coproducts and

sequential colimits starting from X−1 = ∗.

(⇐) For all n ≥ 0, define X〈n〉 to be the spectrum such that X〈n〉q =

{
Xq if q ≤ n

Σq−nXn if q > n
with obvious structure maps. Define maps

λn : Σ∞−n−1ΣXn // Σ∞−nXn // X〈n〉

where the first map is the transpose of the identity map ΣXn → (Σ∞−nXn)n+1 and the second
map is the inclusion of the basepoint in low dimensions and the identity in high dimensions.
Define maps X〈n〉 → X〈n + 1〉 by id up to level n, then ρn : ΣXn → Xn+1, then its suspensions.
Using these maps and the Σ∞−n−1ρn : Σ∞−n−1ΣXn → Σ∞−n−1Xn+1, we have the following:

Σ∞−1ΣX0 Σ∞−1X1 Σ∞−3ΣX2 Σ∞−3X3

X〈0〉 X〈1〉 X〈2〉 X〈3〉 · · ·

Σ∞−2ΣX1 Σ∞−2X2

y

y

y

To see why those pushouts look like that, note that in level q those squares are of the form

∗ //

��

∗

��

Xq // Xq

for q ≤ n, and ΣkXn
Σk−1ρn

//

id
��

Σk−1Xn+1

id
��

ΣkXn
Σk−1ρn

// Σk−1Xn+1

for q = n + k, k ≥ 1.

Also, colimnX〈n〉 is isomorphic to X, since indeed with n big enough, X〈n〉q is just Xq, and you
can check that the structure maps in the colimit are also those of X.

Since the colimit of a sequence of relative cell spectra that starts with a cell spectrum is a
cell spectrum by an exercise in the sheets, then by induction we just need to observe that X0 is
a cell spectrum and that X〈n〉 → X〈n + 1〉 is a relative cell spectrum. By the same exercise, the
latter reduces to seeing that Σ∞−n−1ρn : Σ∞−n−1ΣXn → Σ∞−n−1Xn+1 is a relative cell spectrum.

17Peter May prefers the definition of cellular spectra as we have given it above, dismissing the approach via
Proposition 4.35: “In contrast with earlier treatments, our CW theory is developed on the spectrum level and has
nothing whatever to do with any possible cell structures on the component spaces of spectra. I view the use of space
level cell structures in this context as an obsolete historical detour that serves no useful mathematical purpose.”
[May96, Pages 122-123].
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To see all this: note that if A is a cellular pointed space, then Σ∞−n A is a cell spectrum.
Indeed, just describe A as a sequential colimit of pushouts of attaching maps and apply Σ∞−n

to it: as a left adjoint, it commutes with all these colimits, and cells get taken to cells by their
definition. This proves that X〈0〉 = Σ∞X0 is a cell spectrum.

More generally and by a similar argument, if A → B is a relative cell complex of pointed
spaces, then Σ∞−n A → Σ∞−nB is a relative cell spectrum. This proves that Σ∞−n−1ρn is a
relative cell spectrum, thus finishing the proof. �

Example 4.36. If A is a pointed cell complex, then Σ∞ A is a cell spectrum. Similarly, Σ∞−d A is
a cell spectrum for all d.

Remark 4.37. If X is a cell spectrum, then all its spaces Xn are pointed cell complexes. To
see this, first observe that the suspension of a pointed cell complex is a pointed cell complex,
because Σ preserves colimits and takes cells to cells. Therefore, ΣX0 is a cell complex, so X1 is a
cell complex as both maps ∗ → ΣX0

ρ0−→ X1 are relative cell complexes.

Remark 4.38. The CW-spectra of [Ada74] are defined similarly to the characterization above of
our cell spectra, but it’s more restrictive: 1) each space Xn is required to be a CW-complex, and
2) each map ΣXn → Xn+1 is a subcomplex inclusion (more than a mere relative CW-complex),
where ΣXn has a CW-structure gotten from that of Xn where each k-cell in Xn becomes a k + 1-
cell in Xn+1.

In this case, we can easily talk of “cells” in X similarly to the cells of a CW-complex: if
k ∈ Z, a k-cell in X is a (k + n)-cell in Xn for each n large enough so that k + n ≥ 0, subject to
the relation that we identify it with its image (k + n + 1)-cell in Xn+1. Thus, a CW-spectrum is
really a CW-complex-like object where we allow cells of negative dimension. While we shall
not use CW-spectra, this intuition is appealing.

Remark 4.39. In the previous proof, note that Σ∞−nXn → X〈n〉 is a weak equivalence. On the
other hand, there is no non-trivial map of spectra Σ∞−nXn → Σ∞−n−1Xn+1, since the maps up
to level n are maps to the point, and compatibility of the structure maps would imply that the
map at level n + 1 is trivial, and so all the higher ones are trivial as well:

ΣXn //

id
��

∗

��

ΣXn // Xn+1

On the other hand, we have a zig-zag from Σ∞−nXn to Σ∞−n−1Xn+1; we would like to say
that X is the (homotopy?) colimit of the Σ∞−nXn. This can be made to be meaningful, see
e.g. [Sch, II.5.12] for an explanation in the more complicated setting of symmetric spectra of
simplicial sets. It is of theoretical relevance: it says that every spectrum can be build from
desuspensions of suspension spectra. Note how stage n has trivial homotopy groups below
level −n: each successive stage sees one more non-trivial homotopy group.

Recall that every (pointed) space X admits a (pointed) CW-approximation, i.e. a weak
homotopy equivalence X′ → X from a CW-complex X′. See e.g. [Hat02, 4.13] or [May99a, 10.5]
for an explicit construction by attaching cells to X, or [GJ99, 2.3, 11.4] for a more roundabout
(but functorial) description.

Proposition 4.40. There is a functor Q : Sp → Sp with values in cell spectra, and a natural weak
equivalence QX → X, which actually is a level equivalence.18

18This is an unfortunate clash of notation with the functor Q from Remark 4.23. This is definitely not the same
construction. In our defense, Q is common notation for both these functors.
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PROOF. We fix a functorial cell approximation functor in based spaces. In fact, we need
something more general: we need a functorial way to factor a map of pointed spaces into a
relative cell complex followed by a weak equivalence. See [Ark11, 2.4.9] for an elementary
proof when the spaces are connected and a relative CW-complex is built, or [MP12, 17.2.2] for a
more abstract proof (see also Remark 4.42). Factoring ∗ → Y gives a natural weak equivalence
ΓY → Y where Γ : Top∗ → Top∗ has values in pointed cell complexes.

Let X be a spectrum. Define (QX)0 to be ΓX0, and f0 : (QX)0 → X0 to be the weak
equivalence ΓX0 → X0.

Define (QX)1 by factoring the map

Σ(QX)0
Σ f0−→ ΣX0

ρ0−→ X1

into a relative cell complex σ0 : Σ(QX)0 → (QX)1 followed by a weak equivalence f1 :
(QX)1 → X1.19

Iterating this process defines a spectrum QX = ((QX)n, σn), which is a cell spectrum by
Proposition 4.35; Q defines a functor; and the weak equivalences fn assemble to a natural weak
equivalence of spectra f : QX → X. �

The functor Q is our cofibrant replacement functor.

Corollary 4.41. The functor Q takes weak equivalences to weak equivalences.

PROOF. Follows from the 2-out-of-3 property of weak equivalences, and naturality of
QX → X. �

Remark 4.42. (1) In the previous section we defined a spectrum to be fibrant if it is an
Ω-spectrum. In this section, we haven’t defined what it means for a spectrum to be
cofibrant, because we won’t need this notion in full generality. But you should know
that cell spectra are particular cases of cofibrant spectra.20

(2) In the proof above, we used a functorial factorization of a map into a relative cell
complex followed by a weak equivalence. Actually, the relative cell complex can be
improved to a relative CW-complex [Hir15]. Therefore, the same proof demonstrates
that Q can be taken to have values in spectra with 0-th space a pointed CW-complex,
and with relative CW-complexes as structure maps. Similarly as in Remark 4.37, these
spectra then have CW-complexes at each level. However, they are not CW-spectra
in the sense of Remark 4.38, because the structure maps need not be subcomplex
inclusions!

The good news is that [Hir15] also constructs another factorization of maps X → Y
similarly as above but now, if X is a CW-complex, then the map out of X is the inclusion
of a subcomplex. Using this factorization, the proof above immediately gives that we
can build a Q that actually takes values in CW-spectra. We shan’t be using this, though.

6. Second definition of the stable homotopy category

We will now follow the plan laid out at the beginning of Section 3. Recall the cylinder and
the maps ι0, ι1 : X → X ∧ I+ from Definition 3.29.

Definition 4.43. A homotopy of maps of spectra X → Y is a map H : X ∧ I+ → Y.
If f = H ◦ ι0 and g = H ◦ ι1, we say that H is a homotopy from f to g. If f and g are

homotopical, we write f ∼ g.

19As a side remark, note also that the map Σ f0 would be a weak equivalence if X0 were well-pointed. We don’t
need this, though.

20More precisely, in the model category of spectra that is underlying our thoughts, the class of cofibrant spectra
is the class of retracts of cell spectra.
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A homotopy equivalence is a map f : X → Y for which there exists a map g : Y → X, a
homotopy between g ◦ f and idX, and a homotopy between f ◦ g and idY.

Remark 4.44. (1) A based homotopy of spaces is given by a map of spaces H : X× I → Y
such that H(x0, t) = y0 for all t ∈ I; by adjunction, this is equivalently a map of based
spaces X ∧ I+ → Y.

(2) A homotopy of maps of spectra is equivalently given by a sequence of based homo-
topies of spaces Hn : Xn ∧ I+ → Yn such that the following squares commute:

ΣXn ∧ I+
ΣHn

//

ρX
n ∧id

��

ΣYn

ρY
n
��

Xn+1 ∧ I+ Hn+1

// Yn+1.

More sloppily, but in words, we might say that “Hn+1 is a homotopy relative to ΣHn”.
(3) By adjunction, a homotopy is equivalently a map X → F(I+, Y) in Sp or a map I+ →

Map(X, Y) in Top∗ or a map I → Map(X, Y) in Top, i.e. a path between maps. So two
maps are homotopic iff they lie in the same path component of Map(X, Y).

(4) Homotopic maps induce the same map in homotopy groups, since the analogous
statement is true in spaces. In particular, if f is a homotopy equivalence then it is a
weak equivalence.

(5) If a functor out of Sp takes weak equivalences to isomorphisms, then it takes homo-
topical maps to equal maps. This is proven analogously to Remark 4.5.

Exercise 4.45. Prove that homotopy is an equivalence relation on HomSp(X, Y).

We denote by [X, Y] the set of homotopy classes of maps X → Y.

Remark 4.46. Homotopy equivalence of spectra is, in full generality, not the relation we are
interested in. Consider S′: this is the sphere spectrum except in degree 0 it is *, as in Exam-
ple 4.18. Then any map S → S′ is constant at each level: by definition at level 0, and forced
by the compatibility with the structure maps in higher levels. So there can be no homotopy
equivalence between S and S′, though they morally should be equivalent in some way, and
indeed they are weakly equivalent.

Proposition 4.47. If f : X → Y is a level equivalence of cell spectra, then it is a homotopy equivalence.

PROOF. The maps fn : Xn → Yn are weak equivalences of cell complexes (using Re-
mark 4.37), so by the Whitehead theorem, they are homotopy equivalences. A homotopy
of maps of spectra requires relative homotopies, so we need to work a bit harder. We are in the
situation of commutative diagrams:

ΣXn
Σ fn

∼
//

��

ΣYn

��

Xn+1
∼

fn+1

// Yn+1.

The two vertical maps are relative cell complexes, hence cofibrations. The two horizontal maps
are homotopy equivalences. By [May99a, Page 47], the homotopy between the identity and the
composition of fn+1 and its homotopy inverse is actually a homotopy Hn+1 relative to ΣHn. �

Theorem 4.48 (Whitehead). If f : X → Y is a weak equivalence of cell Ω-spectra, then it is a homotopy
equivalence.
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PROOF. Since X and Y are Ω-spectra, then by Proposition 4.20 f is a level equivalence.
Since X and Y are cell spectra, then by Proposition 4.47 f is a homotopy equivalence. �

Remark 4.49. If X is an Ω-spectrum, then QX is an Ω-spectrum as well. This follows from
the fact that f : QX → X is a level equivalence (Proposition 4.40): we have the following
commutative squares,

(QX)n
fn

∼
//

σ̃n
��

Xn

ρ̃n∼
��

Ω(QX)n+1 Ω fn+1

∼
// ΩXn+1

so σ̃n is a weak equivalence for all n.
In particular, for any spectrum X, QRX is a cell Ω-spectrum.21

Definition 4.50. Let Ho(Sp) be the (locally small) category with objects those of Sp, and with
arrows from X to Y given by the set [QRX, QRY]. Define a functor γ : Sp→ Ho(Sp) which is
the identity on objects, and which takes f : X → Y to the homotopy class of QR f : QRX →
QRY.

Exercise 4.51. Prove that Ho(Sp) is well-defined. Among other things, you need to prove that compo-
sition does not depend on the choice of representative for a homotopy class. So you will need to prove
that if you have maps in Sp

A X Y Ba
f

f ′
b

then f ∼ f ′ implies b ◦ f ∼ b ◦ f ′ and f ◦ a ∼ f ′ ◦ a.

Lemma 4.52. (1) The functor γ : Sp→ Ho(Sp) is such that the function

γ : HomSp(X, Y)→ HomHo(Sp)(X, Y)

is surjective if X, Y are cell Ω-spectra, and in this case it factors as

HomSp(X, Y) HomHo(Sp)(X, Y)

[X, Y]

∼=

(2) γ( f ) is an isomorphism in Ho(Sp) if and only if f is a weak equivalence in Sp.
(3) Every morphism of Ho(Sp) is a composite of morphisms of the form γ(a) or γ(w)−1 for w a

weak equivalence.

PROOF. (1) Let X, Y be cell Ω-spectra. Let [ f : QRX → QRY] ∈ HomHo(Sp)(X, Y) be a
morphism. We have the following solid diagram in Sp

QRX QRY

QX QY

X Y

∼

∼

f

∼

∼

g

21If you’re wondering whether RQX is also a cell Ω-spectrum, then I’ll have to disappoint you, it isn’t in
general. The functor R may not take cell spectra to cell spectra. You could build an R′ that would satisfy this extra
condition, but it wouldn’t be as explicit as our R.
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where the arrows marked ∼ are weak equivalences between cell Ω-spectra, so they
are homotopy equivalences; inverting the two pointing backwards, we can define the
dotted map g. Now, the two maps f , QRg : QRX → QRY are homotopical. Indeed,
after composing with the homotopy equivalences X → QRX on the left and QRY → Y
on the right, f becomes g by definition, whereas QRg becomes homotopical to g, using
naturality of Q and R. So g is the map we were looking for.

Moreover, if f ∼ f ′, then by construction g ∼ g′, too, so the second statement
follows.

(2) If γ( f ) = [QR f ] is an isomorphism, that means QR f is a homotopy equivalence, so
it is also a weak equivalence. Hence the top arrow in the following commutative
diagram is a weak equivalence,

QRX QRY

QX QY

X Y

∼

∼

QR f

∼

∼

f

Q f

so by 2-out-of-3, Q f is also a weak equivalence, and again by 2-out-of-3, f is a weak
equivalence.

Conversely, if f : X → Y is a weak equivalence, then QR f is a weak equivalence
between cell Ω-spectra, so it’s a homotopy equivalence, i.e. γ( f ) is an isomorphism.

(3) Let f : γ(X)→ γ(Y) in Ho(Sp) (we stick to the notation γ(X) for the sake of clarity).
We have X ∼←− QX ∼−→ QRX in Sp, and similarly for Y. We now apply γ to these, so we
get the solid diagram

(4.53)

γ(X) γ(QX) γ(QRX)

γ(Y) γ(QY) γ(QRY)

f

∼= ∼=

∼= ∼=

where the horizontal maps are isomorphisms by the previous part of this lemma.
Since QRX and QRY are cell Ω-spectra, then by part (1) we know that the dotted
map γ(QRX) → γ(QRY) (defined as the composition) is of the form γ( f ′) for an
f ′ ∈ HomSp(QRX, QRY). The commutativity of the rectangle gives our decomposition
of f .

�

Theorem 4.54. There is a unique isomorphism of categories T : Sp[W−1] → Ho(Sp) such that
T ◦ ι = γ.

PROOF. We will prove that γ : Sp → Ho(Sp) satisfies the universal property of Proposi-
tion 4.1.

First, we need to verify that γ takes weak equivalences to isomorphisms; we just did this
in Lemma 4.52.(2).

Now, let D be a category with a functor F : Sp → D which sends weak equivalences to
isomorphisms. We need to prove there exists a unique functor F′ making the following diagram



60 4. THE HOMOTOPY THEORY OF SPECTRA

commute:

Sp F
//

γ

��

D

Ho(Sp).
F′

;;

Let us first prove that there can only be one such F′. Since γ is the identity on objects, we
need to set F′X = FX. By Lemma 4.52.(3), we know that any map in Ho(Sp) can be written
as a composition of maps of the form γ(a) or γ(w)−1 for w a weak equivalence. Now, since
F′ ◦ γ = F, then F′(γ(a)) = F(a), and F′(γ(w)−1) = F′(γ(w))−1 = F(w)−1. This proves that F′

is unique, if it exists.
To define F′, we set F′(X) = X, and for F′( f : X → Y) we use the decomposition from

(4.53), so we define it as the composition in the following diagram, where the horizontal maps
are of the form F(w) for w a weak equivalence in Sp.

F(X) F(QX) F(QRX)

F(Y) F(QY) F(QRY)

F′( f )

∼=

∼= ∼=

F( f ′)

∼=

We need to check that the definition of F′( f ) doesn’t depend on the choice of f ′. If f ′′ : QRX →
QRY is another map such that γ( f ′′) makes (4.53) commute, then f ′′ ∼ f ′ by the second
part of Lemma 4.52.(1). But then, since γ takes weak equivalences to isomorphisms, then
by Remark 4.44.5 it also takes homotopical maps to equal maps, so γ( f ′′) = γ( f ′) and F′ is
well-defined. It is not hard to check that it preserves identities and compositions. �

From the above theorem, we can deduce a couple of properties of the localization.

Corollary 4.55. (1) The category Sp[W−1] is locally small.
(2) A morphism in Sp is inverted by Sp→ Sp[W−1] if and only if it is a weak equivalence.22

(3) A functor F : Sp → Sp that preserves weak equivalences descends uniquely to a functor
Ho(F) : Ho(Sp) → Ho(Sp), often simply denoted by F. If F has a right adjoint G that
preserves weak equivalences, then (Ho(F), Ho(G)) is an adjoint equivalence.23

PROOF. (1) This follows from Ho(Sp) being locally small.
(2) This follows from the analogous property for γ : Sp→ Ho(Sp), which was proven in

Lemma 4.52.2.
(3) This follows from Proposition 4.3 and Exercise 4.7. �

Remark 4.56. The following is useful; we prefer to omit the proof. For abstract formulations
and proofs, see [MP12, Chapter 16] or [Hov99, 1.3.2].

(1) Let F : Top∗ → Sp be a functor. Suppose that F takes cell complexes to cell spectra,
and it takes weak equivalences between cell complexes to weak equivalences. Then
it induces a functor LF : Ho(Top∗) → Ho(Sp), defined by first replacing a pointed
space by a pointed cell complex, then applying F. Here Ho(Top∗) is Top∗[W

−1] where
W are the weak equivalences.

(2) If G : Sp → Top∗ takes weak equivalences between Ω-spectra to weak equivalences,
then it induces a functor RG : Ho(Sp) → Ho(Top∗) defined by first replacing a
spectrum by an Ω-spectrum, then applying G.

22This property of the class of arrows W is called saturation.
23The same is true if we replace Sp by Top or Top∗, in the domain or in the codomain.
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(3) If F, G are above are such that (F, G) is an adjoint pair, then (LF, RG) is an adjoint
pair.

(4) Using the above, one can construct the adjoint pair (LΣ∞, RΩ∞). This RΩ∞ is what
many homotopy theorists mean when when they write Ω∞ (recall Remark 3.19). The
notation gains meaning: RΩ∞(X) is the zero-space of the Ω-spectrum RX, hence an
honest infinite loop space.

The definition of the maps in Ho(Sp) is a bit complicated, but it has the advantage that it’s
then easy to define a functor Sp → Ho(Sp). We can simplify the description of maps in the
stable homotopy category a bit:

Exercise 4.57. (1) Prove that HomHo(Sp)(X, Y) ∼= [QX, RY]. 24

(2) If X is a cell spectrum, prove that HomHo(Sp)(X, Y) ∼= [X, RY].
(3) If Y is an Ω-spectrum, prove that HomHo(Sp)(X, Y) ∼= [QX, Y].
(4) If X is a cell spectrum and Y is an Ω-spectrum, prove that HomHo(Sp)(X, Y) ∼= [X, Y].

Remark 4.58. For the purposes of this course, we will call Ho(Sp) the stable homotopy category.
In common mathematical practice, any category equivalent to Ho(Sp) is called like that. From
Side remark 3.17 we know there are many different but equivalent ways of producing one. For
a classical axiomatic presentation of it, see [Mar83, Section 2.1]. See also Side remark 6.12 for a
development of this idea.

Example 4.59. In Example 4.17 we talked about the degree p map and the Hopf map, and
we observed that we couldn’t define them as maps of spectra with the strict definition. In
Example 4.26 we defined a stable version of the Hopf map as a map η : RΣS→ RS.

By Exercise 4.57 we know we can give a representative of γ(η) in Sp as a map ΣS→ RΣS,
without fibrant-replacing on the domain, since ΣS is cell. In this case, using compactness of S1,
we can actually be very explicit about it, without using the exercise.

By adjunction, to determine a map η : ΣS = Σ∞S1 → RS we may equivalently determine a
map of based spaces S1 → (RS)0. Recall that (RS)0 is the telescope

(RS)0 = hocolim(S0 → ΩS1 → Ω2S2 → · · · )
so by the results at the end of Section 1.5, MapTop∗

(S1, (RS)0) ∼= colimnMapTop∗
(S1, ΩnSn). To

give an object in this colimit it is enough to give a map S1 → ΩmSm for some m. We choose
m = 2: we let the map S1 → Ω2S2 be the transpose to the Hopf map S3 → S2.

Compare to Example 4.18, where we showed how to define a degree p map S → S in
Sp[W−1]. Similarly, we could have directly defined the Hopf map in Sp[W−1] easily, and
similarly as above, we could define the degree p map as an object in [S, RS].

Let us end with yet another remark about how to see “eventually-defined maps of spectra”
as actual maps.

Remark 4.60. Let X and Y be spectra. Let k ≥ 1, and let fn : Xn → Yn for n ≥ k be maps that
commute with the structure maps. At the end of Example 4.26 we defined a map ϕ : RX → RY.
So [Qϕ] is a map X → Y in Ho(Sp). We can construct a representative for it more directly if we
add some hypotheses.

(1) If X is cell and Y is an Ω-spectrum, then by Lemma 4.52.(1) we can define a unique-up-
to-homotopy map f : X → Y such that QR f is the same as Qϕ in Ho(Sp). They both
represent the original “eventually-defined map”.

24In general, this follows from [Hov99, 1.2.5.iv], of which one of the two dual versions adapted to this case says
that if A is a cell spectrum and f : B → B′ a weak equivalence between Ω-spectra, then f∗ : [A, B] → [A, B′] is an
isomorphism.
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Here’s an alternative way to go about it. We use the following general result: if
A → B is a weak equivalence of spaces and U → V is a relative cell complex, then,
there exists a dotted map that makes the following diagram commute up to homotopy:

U A

V B

∼

For example, for the first step, ∗ → X0 is a relative cell complex, and you lift the map
X0 → ΩY0 → ΩY1 against the weak equivalence Y0 → ΩY1.

(2) If Y is an Ω-spectrum and Yi is a CW-complex for i ≤ k, you can also define such a
map X → Y, but now the lifting is easier because you can actually invert the weak
equivalences. You use two ingredients here: first, the classical theorem that the loop
space of a CW-complex has the homotopy type of a CW-complex, and a version of the
Whitehead theorem that says that a weak equivalence between spaces of the homotopy
type of CW-complexes is a homotopy equivalence [MP12, 17.3.4(i)].



CHAPTER 5

Stability results

1. Comparison of different suspensions

In Section 2.3 we talked about sh(X), X∧S1 and ΣX. We will now see they are all equivalent,
homotopically.

Proposition 5.1. Let X be a spectrum. There are natural isomorphisms

πn+1(ΣX) ∼= πn(X) ∼= πn−1(ΩX).1

In particular, if f : X → X′ be a map of spectra, then f is a weak equivalence if and only if Σ f is a weak
equivalence2, if and only if Σk f is a weak equivalence for all k ∈N; similarly, f is a weak equivalence if
and only if Ω f is a weak equivalence, if and only if Ωk f is a weak equivalence for all k ∈N.

PROOF. By naturality, we have commutative squares

S1 ∧ X0
η
//

ρ0

��

Ω(S1 ∧ S1 ∧ X0)

Ω(id∧ρ0)
��

X1 η
// Ω(S1 ∧ X1)

where η is the unit of the (Σ, Ω) adjunction. So we have the following commutative diagram

πn+1(S1 ∧ X0)
η∗
//

id

))

πn+2(S1 ∧ S1 ∧ X0)
(id∧ρ0)∗

// πn+2(S1 ∧ X1)

id

))

η∗
// πn+3(S1 ∧ S1 ∧ X1) // · · ·

πn(X0)
η∗

// πn+1(S1 ∧ X0)
(ρ0)∗

// πn+1(X1)
η∗

// πn+2(S1 ∧ X1) // · · ·

The colimit of the first line computes πn+1(ΣX), and the one of the second arrow commutes
πn(X). The vertical arrows define the desired natural isomorphism between the colimits.

The proof of the natural isomorphism πn(X) ∼= πn−1(ΩX) is similar, and left as an exercise.
The last statement follows directly from the naturality squares. �

We can now prove that Σ and Ω are “inverses up to equivalence” in Sp:

Corollary 5.2. (1) The unit X → ΩΣX and the counit ΣΩX → X are stable equivalences. In

particular, the adjunction (Σ, Ω) descends to an adjoint equivalence Ho(Sp)
Σ
//

Ho(Sp)
Ω

∼
oo .

As a consequence, we will use the notation Σ−1 for Ω.
(2) The natural map ΣX → sh(X) from Section 2.3 is a stable equivalence, so we have natural

weak equivalences ΣnX → shn(X) for n ≥ 0. Dually, the natural map sh−1(X)→ ΩX is a
stable equivalence, and we have natural weak equivalences sh−nX → ΩnX for n ≥ 0.

1Note how false this is for spaces!
2Note how the “well-pointed” hypothesis, needed for the true implication for pointed spaces, is gone here.

63
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PROOF. (1) Composing the isomorphisms πn(X) ∼= πn+1(ΣX) ∼= πn(ΩΣX) and look-
ing at their definitions, we see that they are induced by the unit map, and similarly for
the counit. That Σ and Ω descend to the homotopy category as an adjoint equivalence
follows from Corollary 4.55.(3).

(2) The map πn(ΣX) → πn(sh(X)) factors as πn(ΣX)
∼=−→ πn−1(X)

∼=−→ πn(sh(X)), where
the first isomorphism was constructed in the proof of the proposition, and the second
isomorphism is constructed similarly. �

Remark 5.3. In particular, for any d ≥ 0 and any Y ∈ Top∗ we have a weak equivalence (and
hence an isomorphism in Ho(Sp))

Σ∞−dY = sh−dΣ∞Y ∼−→ ΩdΣ∞Y = Σ−dΣ∞Y

as was to be expected. Similarly as in Remark 3.25, we have

Σ∞−dY ∼= Σ∞−dS0 ∧Y ∼−→ Σ−dΣ∞S0 ∧Y = Σ−dS∧Y.

As for spaces which are suspensions, we have a zig-zag of weak equivalences

Σ∞−nΣnY ∼−→ ΩnΣ∞ΣnY ∼= ΩnΣnΣ∞Y ∼←− Σ∞Y,

where the isomorphism comes from Exercise 3.35.(2) and the last weak equivalence comes from
composing loops of the weak equivalences X → ΩΣX.

Example 5.4. Let’s see how does the “degree p” map now look like, using these weak equiva-
lences. In Example 4.18 we constructed it as a map S → S, which by inspection is exactly the
map Σ∞−1 fp : Σ∞−1S1 → Σ∞−1S1 where fp : S1 → S1 is a degree p map. We have the following
solid commutative diagram,

S = Σ∞S0 ΩΣΣ∞S0 ΩΣ∞ΣS0 Σ∞−1ΣS0

S = Σ∞S0 ΩΣΣ∞S0 ΩΣ∞ΣS0 Σ∞−1ΣS0

Σ∞−1 fp

∼ ∼= ∼

∼∼=∼

ΩΣ∞ fp

The vertical dotted map does not exist in Sp, but does exist in Ho(Sp), since then we can invert
the weak equivalences and just go around the diagram. We could do something similar for the
Hopf map.

We saw in Section 2.3 that there is no natural map X ∧ S1 → sh(X) (or the other way
around). Similarly, there is no natural map ΣX → X ∧ S1 (or the other way around). It would
be, on stage n, a map S1 ∧ Xn → Xn ∧ S1. The only candidate would be the twist τ. But this
would not give a map of spectra, since the following diagram doesn’t commute:

S1 ∧ S1 ∧ Xn
id∧τ

//

id∧ρn
��

S1 ∧ Xn ∧ S1

ρn∧id
��

S1 ∧ Xn+1 τ
// Xn+1 ∧ S1
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You could think that we can fix this if our structure maps for ΣX had twists in them, so that the
diagram above would look like

S1 ∧ S1 ∧ Xn
id∧τ

//

τ∧id
��

S1 ∧ Xn ∧ S1

ρn∧id

��

S1 ∧ S1 ∧ Xn

τS1,S1∧Xn

77

id∧ρn
��

S1 ∧ Xn+1 τ
// Xn+1 ∧ S1

where the diagonal arrow helps us prove commutativity: the bottom part commutes by natu-
rality of τ, and the upper part by inspection.3

Note that the arrow τ : S1 ∧ S1 → S1 ∧ S1 is not the identity: it is a map of degree −1,
so there’s no contradiction with this diagram commuting and the previous one not, they’re
honestly different diagrams.

You could now propose that we define Σ′X so as to include that twist. If we do that, then
something else breaks: we get no natural map Σ′X → sh(X) or Σ′X → ΣX. So we are not
gaining much: we still cannot connect all of the actors together easily. Let us dump this idea.

However, looking again at the diagram above: suppose the first S1 was an S2. In this
case, we could use the fact that the twist map Sn ∧ Sm → Sm ∧ Sn has degree (−1)nm. Then
τ ∧ id : S2 ∧ S1 ∧ Xn → S1 ∧ S2 ∧ Xn is homotopic to the identity. So suppose we defined
“S2-spectra” as sequences (X0, X2, X4, . . . ) with structure maps S2 ∧ Xn → Xn+2. Intuitively,
this should be the same thing as spectra, because the inclusion of even natural numbers into
natural numbers is cofinal. One can use these ideas to formally prove that X ∧ S1 is naturally
isomorphic to ΣX in Ho(Sp). See e.g. 3.22 of nLab:model struture on topological sequential
spectra for a proof along these lines. We prefer not to get into that, so we will just state:

Proposition 5.5. The functor −∧ S1 passes to the homotopy category: −∧ S1 : Ho(Sp)→ Ho(Sp),
and it is naturally isomorphic to Σ there.

Exercise 5.6. State the precise relationship between ΩX, sh−1(X) and F(S1, X).

2. (Co)fiber sequences

The following definitions are analogous to the definitions for spaces.

Definition 5.7. (1) The cone of a spectrum X is X ∧ I. It comes with a canonical map
X → X ∧ I. In level n, it is the reduced cone of Xn.

(2) The homotopy cofiber (or mapping cone) of a map f : X → Y of spectra is the spectrum
C f defined as the following pushout.

X Y

CX C f .

f

y

In level n, it is the reduced homotopy cofiber of f .

Exercise 5.8. Let f : X → Y be a map of pointed spaces or of spectra. Prove that it is (based)
nullhomotopic if and only if it factors via the canonical inclusion X → CX.

3Or, killing a flea with a steamroller, by the fact that Top∗ is a symmetric monoidal category, and the coherence
theorem for those.

https://ncatlab.org/nlab/show/model+structure+on+topological+sequential+spectra
https://ncatlab.org/nlab/show/model+structure+on+topological+sequential+spectra
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Therefore, if we have maps X
f−→ Y

g−→ Z, to determine a map a making the following solid
diagram commute, is equivalent to determining a nullhomotopy of g ◦ f .

X Y

CX C f

Z

f

y g

a

This gives us the justification to make the following definition.

Definition 5.9. Let X
f−→ Y

g−→ Z be a sequence of maps of spectra, and fix a nullhomotopy
of g ◦ f . The sequence is a (homotopy) cofiber sequence if the induced map C f → Z is a weak
equivalence. A map of cofiber sequences consists of three vertical maps making the two squares
commute.

Example 5.10. If X → Y → Z is a cofiber sequence of pointed spaces, then Σ∞X → Σ∞Y →
Σ∞Z is a cofiber sequence of spectra, and similarly for Σ∞−d.

Dually, we can define the path space PX, the homotopy fiber (mapping path spectrum) P f ,
and (homotopy) fiber sequences.

In Top∗, fiber sequences have long exact sequences of homotopy groups. It is also the case
in spectra:

Proposition 5.11. Let X
f−→ Y

g−→ Z be a fiber sequence of spectra. It induces a natural long exact
sequence of abelian groups

· · · // πk(X)
f∗
// πk(Y)

g∗
// πk(Z) ∂

// πk−1(X) // · · · .

PROOF. Levelwise this is true, and then it suffices to pass to the colimit. �

More interestingly, cofiber sequences also give long exact sequences in homotopy! This is
not true in spaces, at least not without connectivity hypotheses as in Corollary 2.29.

Proposition 5.12. Let X → Y → Z be a cofiber sequence of spectra. It induces a natural long exact
sequence of abelian groups

· · · // πk(X)
f∗
// πk(Y)

g∗
// πk(Z) ∂

// πk−1(X) // · · · .

PROOF. First, note that we can build a sequence of spectra similar to the Puppe sequence,
where each two consecutive maps is a homotopy cofiber sequence. Indeed, we have levelwise
Puppe sequences for each component pointed space, and we can connect them via the structure
maps, getting a sequence of maps of spectra4

X
f
// Y

g
// Z

q
// ΣX

−Σ f
//// ΣY // · · ·

where each two consecutive maps is a homotopy cofiber sequence. Hence, by Proposition 5.1, it

suffices to check that X → Y → Z induces an exact sequence of abelian groups πkX
f∗−→ πkY

g∗−→
πkZ for each k ∈ Z. Without loss of generality, we may assume that Y → Z is the canonical
map g : Y → C f .

4For the moment we don’t know what’s the opposite of a map of spectra; we can take−Σ f here to mean simply
the map that has −Σ fn at each stage.
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Now, since g ◦ f is nullhomotopic, then g∗ ◦ f∗ = 0. Given α ∈ πk(Y) such that g∗(α) = 0,
we need to see it’s in the image of f∗. Fix such an α.

Since g∗(α) = 0, there exists an n and αn ∈ πn+k(Yn), a representative of α, such that
(gn)∗(αn) = 0 in πn+k(C fn). In other words, gn ◦ αn is nullhomotopic, so we have an extension
to the cone as in the following diagram.

Sn+k Yn C fn

CSn+k

αn gn

ᾱn

By naturality of pushouts, we have the dotted map in the following diagram where the front
and the back are pushouts.

Yn C fn

Sn+k CSn+k

CYn Cgn ΣXn Xn+1

CSn+k Sn+k+1

gn

αn

ᾱn

Cαn

∼ ρX
n

y

y

Here the weak equivalence Cgn → ΣXn comes from Puppe. We let

Sn+k+1 → Cgn → ΣXn → Xn+1

be denoted by βn+1, and we let β ∈ πk(X) denote its associated stable homotopy class. Now
want to prove that f∗(β) = α.5 6

Define hn to be the following dotted map, gotten from the universal property of the homo-
topy cofiber, since CYn is contractible.

Xn Yn C fn

CYn

fn gn

hn

We use it to get another induced map of pushouts:

Yn CYn

Yn C fn

CYn ΣYn

CYn Cgn

id

gn

hn

id

y

y

5I don’t wish to dwell on the sign issue because it’s a non-issue here: if we find a β such that f∗(β) = ±α, we’re
done, because if it’s negative we can just take −β. Perhaps the β we’ve built gives −α; allow me to be lazy and skip
the check.

6Note how α is represented in level n and β is represented in level n + 1. It was to be expected that β should be
represented by a “later” homotopy class, since the result is false for spaces.
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Now, hn ◦ ᾱn = Cαn (check!). So when you compose the two dotted arrows in the two cubes,
putting the second cube behind the first one, you are actually getting Σαn : Sn+k+1 → ΣYn. We
have the following commutative diagram:

Sn+k+1 Cgn ΣXn Xn+1

ΣYn Yn+1

∼

fn+1

ρX
n

Σ fn

ρY
n

Σαn

Now, if we go right and then down, we get fn+1(βn+1). If we go down with the curved arrow
then right, we get ρY

n ◦ Σαn whose equivalence class is equal in πk(X) to that of αn. Therefore,
f∗(β) = α. �

Using the above and a bit more work, one can prove the following (compare it to Corol-
lary 2.29):

Proposition 5.13. There are natural weak equivalences ΣP f → C f and P f → ΩC f . A sequence

X
f−→ Y

g−→ Z of spectra is a fiber sequence if and only if it is a cofiber sequence.

PROOF. Omitted. �

As a direct consequence of the long exact sequence of homotopy groups for fiber/cofiber
sequences, we have:

Corollary 5.14. Let f : X → Y be a map of spectra. Then the following are equivalent:

(1) f is an equivalence,
(2) The homotopy fiber of f is weakly equivalent to the zero spectrum,
(3) The homotopy cofiber of f is weakly equivalent to the zero spectrum,

Thus, the analogy that “(co)fibers are like (co)kernels” doesn’t work too well. We should
rather be thinking of cofiber sequences as triangles... more on that below. To illustrate that
better, in Section 3 we will give an example of maps which in classical algebra are injective
or surjective, but when transported to the world of spectra, they have interesting fibers and
cofibers.

3. Homotopy pushouts and pullbacks

We could define the double mapping cylinder in spectra, and then we’d say a square is homo-
topy cocartesian if the induced map from the double mapping cylinder is a weak equivalence.
We could then prove it is equivalent to the following, which for simplicity we choose to simply
give as the definition.

Definition 5.15. The commutative square in the left of the following diagram is a homotopy
pushout if the induced dotted arrow is a weak equivalence.

X Y C f

X′ Y′ C f ′

f

f ′

Similarly, define homotopy pullbacks.

The following shows that the Blakers–Massey Theorem 2.27 is much simplified in the realm
of spectra.
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Corollary 5.16. A commutative square of spectra is a homotopy pullback if and only if it is a homotopy
pushout.

PROOF. We have the following commutative diagram

ΩC f P f X Y C f ΣP f

ΩC f ′ P f ′ X′ Y′ C f ′ ΣP f ′∼

∼∼

∼

The proof follows from 2-out-of-3 and Proposition 5.1. �

This is one of the main properties of Ho(Sp). It is essentially equivalent to stability, in the
sense of the equivalence in Proposition 5.13. See [Lur17, 1.1.3.4] for a precise statement.

4. Product and coproduct

In the category of abelian groups, or in the category of R-modules for any commutative
ring R, finite products and coproducts coincide. This is true in any abelian category. It is also
true in the homotopy category of spectra, as we shall now see. It is not true in spaces, and a
precise measure of how it fails to be true was given in Corollary 2.30.

First, note that in any category with binary (co)products and a zero object, there is a map
from the binary coproduct to the binary product, by the universal properties, using the zero
maps X → Y and Y → X.

(5.17)

X X

X ∨Y X×Y

Y Y

c

ι0

ι1 π1

π0

Lemma 5.18. Let X, Y ∈ Sp. The canonical map πk(X)⊕ πk(Y)
(ι0∗,ι1∗)−−−−→ πk(X ∨ Y) is an isomor-

phism.7

PROOF. Since by construction X
ι0−→ X ∨ Y c−→ X × Y

π1−→ Y is the zero map, we get an
induced map Cι0 → Y, and this map is a level equivalence, therefore a weak equivalence, so
we have a cofiber sequence

X
ι0−→ X ∨Y

π1c−→ Y.

It is split on the right by ι1 : Y → X ∨Y, so by Proposition 5.12 we have a split exact sequence

πk+1(X ∨Y) πk+1(Y) πk(X) πk(X ∨Y) πk(Y) πk−1(X)∂∂

(ι1)∗ (ι1)∗

which implies that

0 πk(X) πk(X ∨Y) πk(Y) 0
(ι1)∗

is a split short exact sequence, proving the result. �

Corollary 5.19. If f : X → Y and g : X′ → Y′ are weak equivalences, then f ∨ g : X ∨ X′ → Y ∨Y′

is a weak equivalence.

7It follows by induction that the analogous result is true for a finite number of spectra. It’s also true for arbitrary
wedges.
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Corollary 5.20. Let X and Y be spectra. The map c : X ∨Y → X×Y is an equivalence.

PROOF. Taking homotopy groups in (5.17), we get a sequence

πk(X)⊕ πk(Y) // πk(X ∨Y) // πk(X×Y) // πk(X)× πk(Y).

The first map is an isomorphism by the previous lemma. The last map is an isomorphism by
Exercise 4.12. The total composite is an isomorphism by construction. Therefore, the middle
map is an isomorphism. �

The corollary above gets us close to proving what we want, but we first need to see that
finite products and coproducts in Ho(Sp) are really given by ∨ and × from Sp.

Proposition 5.21. The binary coproduct in Ho(Sp) is given by ∨, and the binary product by ×. The
natural map X ∨Y → X×Y in Ho(Sp) is an isomorphism; this is summarized by saying that Ho(Sp)
is semiadditive.

PROOF. Let X, Y, Z be spectra. Since the coproduct of cell spectra is cell, QX ∨ QY is cell.
Also, QX ∨ QY → X ∨ Y is a weak equivalence by Corollary 5.19. What we want to prove is
that the top map in the following commutative diagram is an isomorphism:

HomHo(Sp)(X ∨Y, Z) //

∼=
��

HomHo(Sp)(X, Z)×HomHo(Sp)(Y, Z)

∼=
��

HomHo(Sp)(QX ∨QY, RZ) // HomHo(Sp)(QX, RZ)×HomHo(Sp)(QY, RZ)

So it suffices to see the bottom map is an isomorphism. But all the domains in the hom-sets are
cell, and all the domains are Ω-spectra, so by Exercise 4.57, we want to see that

[QX ∨QY, RZ]→ [QX, RZ]× [QY, RZ]

is an isomorphism. This follows from the universal property for ∨ in Sp, plus the fact that
homotopies out of a wedge are in bijection with pairs of homotopies from each of the factors,
because the smash product of pointed spaces commutes with the wedge.

The final claim follows from Corollary 5.20. �

Remark 5.22. Observe that the zero spectrum is a cell Ω-spectrum, and it is the zero object in
Ho(Sp). By induction, we deduce that Ho(Sp) has finite products and coproducts, and that the
natural map X1 ∨ · · · ∨ Xn → X1 × · · · × Xn is an isomorphism. 8

The above can be generalized a bit: if you have a set {Xα} of spectra such that for each
Xα, all but a finite number of the πn(Xα) are zero, then the natural map

∨
α Xα → ∏α Xα is an

equivalence. This is [Ada74, III.3.14].

As with Ho(Top), that’s generally it for strict colimits and limits in Ho(Sp). The important
notion here is that of general homotopy limits and colimits, but we shall not get into that.

8Ho(Sp) actually also has arbitrary coproducts and they coincide with the ones of Sp, see Footnote 7. The
analogous statement for infinite products is false, see [Sch, I.2.20] for an explicit counterexample.



CHAPTER 6

More structure

1. Additivity

We just proved that Ho(Sp) is a semiadditive category, i.e. it has a zero object and a biproduct
A ⊕ B (which is both the product and the coproduct in a compatible way). Then, as in any
semiadditive category, we can define a sum operation on homsets like this: if f , g : A → B,
define f + g : A→ B to be the composition

A ∆
// A× A = A⊕ A

f⊕g
// B⊕ B = B ∨ B ∇

// B.

This endows Hom(A, B) with the structure of a commutative monoid, and composition is
bilinear, so that Ho(Sp) is enriched over the category of commutative monoids.1 Now, let

A× A ∼= A ∨ A→ A× A

be (ι0, ∆): this is the shearing map (a, a′) 7→ (a + a′, a′). It is a general remark that it is an
isomorphism if and only if Map(A, X) has inverses and is thus an abelian group, for all X. In
this case, composition is also a morphism of abelian groups, and we say the category is additive.
See [Sch, II.1.12] for details.

Proposition 6.1. The shearing map is an isomorphism for all spectra A, and thus Ho(Sp) is an additive
category.

PROOF. We want to prove that (ι0, ∆) : A ∨ A→ A× A is a weak equivalence. To do that,
consider the following diagram:

πk(A ∨ A) πk(A× A)

πk(A)⊕ πk(A) πk(A)× πk(A)

(ι0∗,ι1∗) ∼=

(ι0,∆)∗

(π0∗,π1∗)∼=

The bottom map is the shearing map of πk(A) in the category of abelian groups. It makes the
diagram commute by inspection, and it is an isomorphism because πk(A) is an abelian group.
Therefore, the top map is an isomorphism, for all k ∈ Z. �

Remark 6.2. (1) Thus, additivity of a category is property, not structure: it is the property
of there existing a zero object, of the canonical map from the binary coproduct to the
binary product being an isomorphism, and of the shear map being an isomorphism.
The structure of enrichment over abelian groups comes for free. Some definitions of
an additive category are of the form “semiadditive + enrichment over abelian groups”
– you could then check that the two sums have to be the same.

(2) We can give a more explicit enrichment of Ho(Sp) over Ab, which has to coincide with
the one we gave by the general property of the previous item. The idea is to exploit
Proposition 2.11 and the fact that Σ is an equivalence of categories in Ho(Sp). First,
note that Proposition 2.11 generalizes mutatis mutandis to other categories. Now, in

1The monoidal product in the category of commutative monoids is given by the tensor product of commutative
monoids. You may not be familiar with it, but it’s very much analogous to the tensor product of abelian groups.
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Ho(Sp), a double suspension is a homotopy cocommutative co-H-group object, simi-
larly as in spaces. Since Σ2 : HomHo(Sp)(X, Y) → HomHo(Sp)(Σ2X, Σ2Y) is a bijection,
then HomHo(Sp)(X, Y) acquires an abelian group structure, and you can prove this
defines an enrichment of Ho(Sp) over Ab. You could do something analogous using
Ω2, and it would give the same structure, too.

2. Some more results on homsets, and graded homotopy groups

Let us see how the abelian group structures above generalize those of the homotopy groups.
To this end, it is comfortable to see Ho(Sp) not only as enriched over Ab, but as being enriched
over AbZ, i.e. as having graded abelian groups as hom-objects:

Definition 6.3. For X, Y ∈ Sp and n ∈ Z, define

HomHo(Sp)(X, Y)n := HomHo(Sp)(X, Σ−nY) ∼= HomHo(Sp)(Σ
nX, Y).

Define the composition

HomHo(Sp)(X, Y)n ×HomHo(Sp)(Y, Z)m → HomHo(Sp)(X, Z)n+m

as follows: if f : X → Σ−nY and g : Y → Σ−mZ, then its composition is

X
f
// Σ−nY

Σ−ng
// Σ−n−mZ.

Thus, HomHo(Sp)(X, Y)• is a Z-graded abelian group, and composition is a morphism of graded
abelian groups.

Our aim is to prove that HomHo(Sp)(S, X)• ∼= π∗(X), which justifies the choice of the sign
in the grading. To do this, we will first prove some useful observations about maps.

Proposition 6.4. Let A be a pointed cell complex, Y be an Ω-spectrum and d ≥ 0. Then

HomHo(Sp)(Σ
∞−d A, Y) ∼= [A, Yd].

PROOF. By adjunction, we have HomTop∗(A, Yd) ∼= HomSp(Σ∞−d A, Y), and you can check
that this is compatible with homotopies so that [A, Yd] ∼= [Σ∞−d A, Y]. Now, since A is a cell
complex, then Σ∞−d A is a cell spectrum, so since Y is an Ω-spectrum by hypothesis, then this
is really isomorphic to HomHo(Sp)(Σ∞−d A, Y). �

Proposition 6.5. Let A be a pointed finite cell complex, X be any spectrum and d ≥ 0. Then

HomHo(Sp)(Σ
∞−d A, X) ∼= colimn[Σn A, Xd+n].

In particular, if A, B are pointed cell complexes and A is finite, then

(6.6) HomHo(Sp)(Σ
∞ A, Σ∞B) ∼= colimn[Σn A, ΣnB],

and similarly for HomHo(Sp)(Σ∞−d A, Σ∞−eB).

PROOF. Since X is not an Ω-spectrum, we need to replace it by RX in order to compute
this. Now, recall the definition of RX and the results from Section 1.5: remember that a finite
cell complex is compact. Using the proposition above, we get:

HomHo(Sp)(Σ
∞−d A, X) ∼= [A, (RX)d] = [A, hocolimnΩnXd+n] ∼=

∼= colimn[A, ΩnXd+n] ∼= colimn[Σn A, Xd+n]. �
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Remark 6.7. Above, we cannot dispense with the hypothesis of A being finite, in general. The
failure of that isomorphism is measured by a certain lim1 term fitting in Milnor’s exact sequence.
See e.g. [Sch, II.5.8].

Look at the isomorphism (6.6): the right-hand side makes no reference to spectra, and is
the group {X, Y} we defined back in Definition 2.24.1. We see how the study of stable maps
between spaces is a particular case of the more general study of maps between spectra.

Just as homotopy groups of pointed spaces are given by [Sk, X] for k ≥ 0, the same is true
for spectra for k ∈ Z, as soon as you define Sk as ΣkS, or, a bit more explicitly, if k ≥ 0 then Sk is
Σ∞Sk and S−k is Σ∞−kS0.

Corollary 6.8. Let X be a spectrum. Then HomHo(Sp)(S, X)• ∼= π∗(X).

PROOF. If k ≥ 0, then

HomHo(Sp)(S, X)k = HomHo(Sp)(Σ
kS, X) ∼= HomHo(Sp)(Σ

∞Sk, X) ∼=
∼= colimn[Sn+k, Xn] = πk(X).

and

HomHo(Sp)(S, X)−k = HomHo(Sp)(Σ
−kS, X) ∼= HomHo(Sp)(Σ

∞−kS0, X) ∼=
∼= colimn[Sn, Xk+n] = π−k(X). �

Example 6.9. HomHo(Sp)(S, S) ∼= π0(S) ∼= Z.

3. Triangulated structure

We will only give a little sketch here. A triangulated category is an additive category C

endowed with an endofunctor Σ : C→ C which is an equivalence of categories, and endowed
with a class of sequences, called distinguished triangles, of the form X → Y → Z → ΣX,
satisfying some axioms. One can prove that the category Ho(Sp) is a triangulated category,
though we shan’t do it. The endofunctor is the suspension functor, and the distinguished
triangles are the ones isomorphic to images under γ of cofiber sequences: i.e. there exists a
map u : A → B in Sp with homotopy cofiber i : B → Cu, and connecting map δ : Cu → ΣA
(that the homotopy cofiber of i is of this form was observed in passing in Section 2, by analogy
to the case of pointed spaces), fitting into a commutative diagram in Ho(Sp)

X Y Z ΣX

A B Cu ΣA.

a∼= ∼= ∼= Σa∼=

f g h

γ(u) γ(i) γ(δ)

Some of the axioms are: any map X → Y can be completed to a distinguished triangle;

∗ → X id−→→ X → ∗ is a triangle; you can continue forming distinguished triangles as in the
Puppe sequence: if ( f , g, h) is a triangle, then (g, h,−Σ f ) is a triangle, and the converse is also
true; if you are given a ladder diagram of triangles without a map in the third column and
with the suspension of the first map in the fourth column, then you can fill in the third column.
There is an extra axiom called the octahedral axiom which is a bit more complicated.
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For example, to see that every map can be completed to a distinguished triangle, we use
the construction from Lemma 4.52.(3):

X Y C f ′ ΣX

QRX QRY C f ′ ΣQRX

f γ(i)◦b

a ∼= b ∼= id ∼=

(Σa)−1◦γ(δ)

γ(δ)γ(i)γ( f ′)

Σa∼=

From the axioms it follows that you can also extend distinguished triangles to the left: if
( f , g, h) is a distinguished triangle, then (−Ωh, f , g) is a distinguished triangle. Indeed, just see
h as −Σ(−Σ−1h) : ΣΣ−1Z → ΣΣ−1ΣX.

Knowing that Ho(Sp) has this triangulated structure, we can exploit the theory of triangu-
lated categories (see e.g. [Nee01]) to deduce some theorems. For example [Sch, II.2.10]:

Proposition 6.10. Let X
f−→ Y

g−→ C be a fiber/cofiber sequence in Ho(Sp). Then, for every spectrum
W, there are long exact sequences of abelian groups

· · · // HomHo(Sp)(W, ΩY)
−(Ωg)∗

// HomHo(Sp)(W, ΩC) // HomHo(Sp)(W, X)
f∗
// HomHo(Sp)(W, Y)

g∗
// HomHo(Sp)(W, C) // HomHo(Sp)(W, ΣX)

−(Σ f )∗
// HomHo(Sp)(W, ΣY) // · · ·

Similarly, but displayed more succinctly for reading comfort,

· · · // HomHo(Sp)(ΣX, W) // HomHo(Sp)(C, W)
g∗
// HomHo(Sp)(Y, W)

f ∗
// HomHo(Sp)(X, W) // · · ·

Remark 6.11. This is a follow-up to Remark 4.39. In general, to define homotopy colimits, you
cannot do it merely in the homotopy category: you have forgotten data that’s necessary to
build them. In the case of sequential homotopy colimits of spectra, however, it can be done by
using a clever trick. See [Sch, II.5.3] for the definition of the homotopy colimit of a sequence
in a triangulated category. Using this, one can prove what was announced in that previous
remark: X ' hocolimnΣ∞−nXn for any spectrum X. Schwede proves it along these lines in
[Sch, II.5.12] for symmetric spectra.

Side remark 6.12. You could ask yourself the question: does Ho(Sp) together with its triangu-
lated structure completely describe the homotopy theory of spectra? That is a vague question,
but it can be made precise. You need a stronger hypothesis to get a positive answer: you
need to know that the triangulated structure comes from stability before taking the homotopy
category. More precisely: Sp is not merely a model category, it is a stable model category, which
means essentially that it has a canonical suspension functor which becomes an equivalence
once you pass to the homotopy category. This is enough for Ho(Sp) to get a triangulated struc-
ture [Hov99, Section 7].2 Now, suppose that C is another stable model category, and suppose
that Ho(C) ' Ho(Sp) as triangulated categories. Does this mean that the homotopy theory
of Sp and that of C are equivalent? More precisely, does it mean that C and Sp are Quillen-
equivalent? Yes. This is a theorem of Schwede [Sch07]. Even more precisely, a triangulated
equivalence Φ : Ho(Sp)→ Ho(C) can be lifted to a Quillen equivalence Sp→ C which takes S

to a cofibrant-fibrant object which is isomorphic to Φ(S).
Here’s another question you may ask. Is Sp special in some way, among all the stable model

categories? Yes, it is. It is the “free stable model category on one object”. This means that if C is
another stable model category and X ∈ C is a cofibrant-fibrant object, then you get a Quillen left

2Without the very reasonable extra hypothesis of being induced from a stable model category, a related conjec-
ture of Margolis (which adds some other axioms), already alluded to in Remark 4.58, is open as per MO:Is Margolis’s
axiomatisation conjecture still alive?.

https://mathoverflow.net/questions/67227/is-margoliss-axiomatisation-conjecture-still-alive
https://mathoverflow.net/questions/67227/is-margoliss-axiomatisation-conjecture-still-alive
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adjoint X⊗− : Sp→ C that takes S to X. This is a theorem of Schwede and Shipley [SS02, 5.1]
which was used by Schwede in the proof of the result at the end of the previous paragraph.3

4. The smash product

There is a monoidal product in spectra, akin to the smash product of pointed spaces, or to
the tensor product of abelian groups or of their chain complexes. It is not that easy to construct,
as we mentioned in the introduction. Ideally, we would like there to be a functor ∧ defined
in Sp which endows Sp with the structure of a symmetric monoidal category, and which is
suitably compatible with the homotopical structure, so that Ho(Sp) gets an induced symmetric
monoidal structure. Well, we cannot do this in our category Sp. You could try constructing it,
but then you don’t end up actually satisfying the axioms. You can maneuver around this and
get merely a symmetric monoidal structure in Ho(Sp). If you’re really interested, you could
read about it in [Ada74, III.4] or [Swi75, Page 254ff.], but it’s probably not worth it to work out
the details.

We can hastily say the following: the idea, to quote Adams, is that X ∧ Y is “the thing to
which Xn ∧Ym tends as n, m tend to infinity”. The complication comes from the structure maps;
one problem comes from the arbitrariness of having to choose when to apply the structure map
on the left and when on the right; another problem stems from, once again, the fact that the
twist S1 ∧ S1 → S1 ∧ S1 has degree −1. An interesting exposition of the problems one runs
into is in [Rog17, 3.8]. One possible (among many) explicit definition of such a “handicrafted
smash product”, as they’re called, is the following. For X, Y ∈ Sp, define

(X ∧Y)k =

{
Xn ∧Yn if k = 2n

Xn+1 ∧Yn if k = 2n + 1.

For the structure maps, use

Σ(Xn ∧Yn) ∼= ΣXn ∧Yn
ρX

n ∧id−−−→ Xn+1 ∧Yn

and

Σ(Xn+1 ∧Yn) = S1 ∧ Xn+1 ∧Yn
τ∧id−−→ Xn+1 ∧ S1 ∧Yn

id∧ρY
n−−−→ Xn+1 ∧Yn+1.

We shall not be using this construction (or other constructions) at all. A reader familiar with
the tensor product of chain complexes might suggest setting (X ∧ Y)n =

∨
p+q=n Xp ∧ Yq, but

there is no sensible way to define the structure maps.

The more modern model categories of spectra, such as the already mentioned symmetric
spectra [HSS00], [Sch], orthogonal spectra [MMSS01] or EKMM spectra [EKMM97] solve this
problem: their homotopy categories are equivalent to Ho(Sp) but they have the advantage
of having a monoidal structure before passing to homotopy. In the case of symmetric and
orthogonal spectra, the smash product is defined very categorically, and is an application of
the Day convolution product. Lurie’s approach to stable homotopy theory using ∞-categories
[Lur17] also solves this problem.

Side remark 6.13. As a historical remark: the quest for a good monoidal model of spectra
took many years, many different attempts, and many different workarounds. When Lewis
published the short article [Lew91], it was a bad blow to the hopes of success: he proved that
there could be no symmetric monoidal category of spectra satisfying a short list of reasonable
axioms. Luckily, one can drop a single one of them and eliminate the problem, which was first
done by [EKMM97] and then by [HSS00]; if memory serves right, they both drop a different

3In both of these papers, Sp is a model for spectra very close to ours, where spaces are replaced with simplicial
sets.
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axiom. See also MO:Is the ∞-category of spectra convenient? for interesting discussion. A
discussion of this problem in the context of EKMM spectra is in [Elm04].

We now reproduce the motivation from [Rog17, 3.8] because it is pleasantly down-to-earth.
Let R be a ring. Then H̃∗(−; R) gets a graded product (the cup product), induced from an
external product

(6.14) H̃n(X; R)⊗ H̃n(Y; R)→ H̃n+m(X ∧Y; R)

for every X, Y ∈ Top∗. Now, we know that H̃n(X; R) ∼= [X, K(R, n)], and recall that the K(R, n)
assemble to an Ω-spectrum HR. The above external product can be seen to be induced by a
graded product in the Eilenberg–Mac Lane spaces, i.e. there are maps

φn,m : K(R, n) ∧ K(R, m)→ K(R, n + m)

such that (6.14) takes [X
f−→ K(R, n)]⊗ [Y

g−→ K(R, m)] to the composition

X ∧Y
f∧g
// K(R, n) ∧ K(R, m)

φn,m
// K(R, n + m) .

An explicit construction of the φn,m in a more general setting is in [Sto18, 3.2.1]. The fact that it
recovers the usual product was probably first proven in [TW80].

The question we now ask ourselves is: since we can represent H̃∗(−; R) by a spectrum HR
with (HR)n = K(R, n), can we also represent these products at the spectra level? More precisely,
does there exists a spectrum HR∧HR with maps in,m : (HR)n ∧ (HR)m → (HR∧HR)n+m and
a spectrum map µ : HR ∧ HR→ HR such that the φn,m factor as follows?

(HR)n ∧ (HR)m (HR)n+m

(HR ∧ HR)n+m

φn,m

in,m µn+m

As above, the answer is yes, but the operation ∧ doesn’t behave well in our category Sp,
merely in Ho(Sp). We state the following without proof.

Proposition 6.15. There exists a functor − ∧− : Ho(Sp)×Ho(Sp) → Ho(Sp) called the smash
product such that:

(1) Ho(Sp) is a symmetric monoidal category, with monoidal product −∧− and unit S.
(2) It is closed, i.e. X ∧− has a certain right adjoint F(X,−), the internal function spectrum.
(3) This structure is compatible with the operations over Top∗: if A is a cell complex and X is a

spectrum, then X ∧ A ∼= X ∧ Σ∞ A and F(A, X) ∼= F(Σ∞ A, X).
(4) Smashing a cofiber sequence of spectra with a given spectrum gives a cofiber sequence of spectra.
(5) Σ∞(A ∧ B) ∼= Σ∞ A ∧ Σ∞B for cell complexes A and B.
(6) Σ(X ∧Y) ∼= ΣX ∧Y ∼= X ∧ ΣY.
(7) The functor H : Ab→ Ho(Sp) is symmetric monoidal, so H(A⊗ B) ∼= HA ∧ HB.

Here ⊗means ⊗Z, and similarly ∧ should be thought of as ∧S.

Remark 6.16. You may be wondering how are the homotopy groups π∗(X ∧Y) related to the
homotopy groups π∗(X) and π∗(Y). Without further hypothesis, the best answer is: there is a
spectral sequence [EKMM97, IV.1.1, IV.4.1]

E2
p,q = Torπ∗S

p,q (π∗X, π∗Y)⇒ πp+q(X ∧Y)

where π∗S has a graded ring structure presented in the exercises.
With additional connectivity hypotheses on X and Y, this spectral sequence degenerates. If

X is (n− 1)-connected and Y is (m− 1)-connected, then X ∧ Y is (n + m− 1)-connected and

https://mathoverflow.net/questions/322808/is-the-infty-category-of-spectra-convenient
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πn(X)⊗ πm(Y) ∼= πn+m(X ∧ Y), see [Sch, II.5.22]. Thus, for example, the smash product of
connective spectra is connective, and its π0 is the tensor product of the π0’s.

Side remark 6.17. In Side remark 6.12, we observed how special Sp is among stable model
categories. If we take the smash product into consideration, we can say more. Let SpΣ denote
the symmetric monoidal model category of symmetric spectra with the smash product. Then
a model category C is stable if and only if it is tensored, enriched and cotensored over SpΣ. I
may be missing a couple of technical hypotheses here. The original, model-categorical theorem
is due to Shipley [Shi01] but the formulation is a bit different; an ∞-categorical formulation
along these lines can be found in [Lur17, 4.8.2.10].

A very high-brow way of saying this is the following; beware, what follows is way more
technological than what we have at hand, now, but maybe you’ll find it interesting. Lurie con-
siders the ∞-category PrL of presentable ∞-categories with left adjoint functors as morphisms.
He endows it with the structure of a symmetric monoidal ∞-category, and this structure is
such that commutative monoids therein are precisely presentable closed symmetric monoidal
∞-categories. One such object is the ∞-category Sp of spectra with the smash product. It is sta-
ble, and indeed Sp plays a very special role among these: the ∞-category of stable presentable
∞-categories is equivalent to the ∞-category of Sp-modules in PrL. See also [GGN15].





CHAPTER 7

Further properties and examples

1. (Co)homology theories, II

We are now ready to resume our work on cohomology theories.
In Proposition 3.9 we saw that if E is an Ω-spectrum1, then the functors En(−) : CWop

∗ →
Ab given by

En(−) =
{
[−, En] if n ≥ 0

[Σ−n(−), E0] if n < 0
define an extraordinary cohomology theory on pointed CW-complexes. Let us extend this
definition to general spectra.

Definition 7.1. Let X be a pointed CW complex and E be a spectrum. For n ∈ Z, define abelian
groups

En(X) := HomHo(Sp)(Σ
∞X, E)−n = HomHo(Sp)(Σ

−nΣ∞X, E),

where if n ≥ 0, then this is isomorphic to HomHo(Sp)(Σ∞−nX, E) by Remark 5.3.

Remark 7.2. (1) This really recovers the previous definition where E was an Ω-spectrum,
by adjunction when n < 0 and by Proposition 6.4 when n ≥ 0.

(2) We have

(7.3) En(X) ∼= π−nF(X, E) ∼= colimkπ−n+kF(X, Ek).

Indeed, by Corollary 6.8 and Remark 5.3, we have

π−nF(X, E) ∼= HomHo(Sp)(Σ
−nS, F(X, E)) ∼= HomHo(Sp)(Σ

−nS∧X, E) ∼= HomHo(Sp)(Σ
∞−nX, E).

Proposition 7.4. For any spectrum E, the functors En(−) form an extraordinary, reduced cohomology
theory on pointed CW-complexes.

PROOF. The suspension natural isomorphism is gotten as:

En+1(ΣX) = HomHo(Sp)(Σ
−n−1Σ∞ΣX, E)

∼= HomHo(Sp)(Σ−1Σ−nΣ∞X, Σ−1E) HomHo(Sp)(Σ−nΣ∞X, E) = En(X).Σ−1

∼
oo

Combining Proposition 6.10 and Example 5.10, we immediately see that E-cohomology satisfies
exactness. As for additivity, it follows from the fact that wedges are the coproducts in Ho(Sp)
(see Footnote 8), so the contravariant Ab-enriched hom takes them to direct products in Ab. �

Example 7.5. Take E = S. Then E∗(−) is stable cohomotopy theory. Notice what happens
unstably: if X is a pointed space, then [X, Sn] has no reason to be an abelian group, it’s just a
pointed set.

What about homology theories? Yes, we can also do that. Define a homology theory on
pointed CW-complexes dually to Definition 3.4: the functors are covariant.

A spectrum gives rise to a homology theory, dualizing description (7.3) as follows:

1Somehow, it is common in the literature to use E to denote a spectrum that we intend to see as a (co)homology
theory.
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Definition 7.6. Let E be a spectrum. For n ∈ Z, define En(−) : CWop
∗ → Ab by

En(X) = πn(E ∧ X) ∼= colimkπn+k(Ek ∧ X).

The proof of the following proposition is dual to that of Proposition 7.4.

Proposition 7.7. For any spectrum E, the functors En(−) form an extraordinary, reduced homology
theory on pointed CW-complexes.

There is a possible clash of notations between the abelian group En(X) and the pointed
space En, but it should be clear from context what do we mean.

Example 7.8. (1) Take E = S. Then En(−) is stable homotopy theory, i.e. En(X) = πs
n(X).

This is an abstract proof of πs
∗ forming a homology theory: you first prove that any

spectrum gives rise to a homology theory, and then you remark that the sphere spec-
trum gives rise to the stable homotopy groups. You can read a direct proof in [Hat02,
4F.1].

(2) If E = KU, then KU-homology is interesting, but we shall not enter into that here.
See e.g. MO:Why the Dold-Thom theorem? for a description and a pointer to further
reading.

(3) Take E = HG for an abelian group G. Then HGn(S0) is G if n = 0 and 0 if not, so
HG∗(−) ∼= H̃∗(−; G) by uniqueness of ordinary reduced homology theories.

(4) Let E be a spectrum. Then (ΣkE)∗(−) ∼= E∗+k(−). In particular,

(Σk HG)∗(−) ∼= H̃∗+k(−; G).

(5) We can introduce generalized or graded Eilenberg–Mac Lane spectra. If G• is a Z-graded
abelian group, then define HG• :=

∨
n ΣnHGn ' ∏n ΣnHGn, where the equivalence

follows from Remark 5.22. We deduce that

(HG•)q(X) ∼= ∑
n

H̃q−n(X; Gn) and (HG•)q(X) ∼= ∏
n

H̃q−n(X; Gn).

You can extend H to a functor GrAbZ → Ho(Sp).

Remark 7.9. Remember Grothendieck’s wisdom: only take homology groups if you can’t
escape it; it’s the object before taking homology that contains the whole information. The same
rule of thumb applies here, with homotopy instead. So we can say that the spectrum F(X, E) is,
really, the spectrum of cohomology of X with coefficients in E, and E∧X is, really, the spectrum
of homology of X with coefficients in E.

Remark 7.10. Remember how ordinary homology can be obtained as the homology of a certain
chain complex? You start with an abelian group G, you build a certain singular chain complex
of abelian groups C∗(X; G), and then its homology is H∗(X; G). It is a theorem of Burdick–
Conner–Floyd [BCF68] that ordinary homology and its sums, as in Example 7.8.(5), are the
only homology theories that you can get via chain complexes of abelian groups like this.

Definition 7.11. Let E be a spectrum. The coefficient groups of the homology theory E∗ are given
by

E∗(S0) = π∗(E ∧ S0) ∼= π∗(E),
and those of the cohomology theory E∗ are given by

E∗(S0) ∼= π−∗F(S0, E) ∼= π−∗(E).

Example 7.12. Let us compute the coefficients of KU∗(−), i.e. KU∗(S0) = π−∗KU. We already
computed KU0(S0) = Z; therefore, KU2n(S0) = Z for all n ∈ Z. We need only compute
KU1(S0) = K̃(S1):

K̃(S1) ∼= [S1, BU ×Z]∗ ∼= π1(BU) = 0.

https://mathoverflow.net/a/182876/6249
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In conclusion, the spectrum KU is even periodic, in the following sense:

πn(KU) ∼=
{

Z if n is even,

0 if n is odd.

Another consequence of Bott periodicity is that KU ' Ω2KU, or Σ2KU ' KU in other
words.

Remark 7.13. Let us think about duality for a second. By adjunction, E ∧ X and F(X, E) corre-
spond to each other. The covariant functor E ∧− is E-homology, and the contravariant functor
F(−, E) is E-cohomology. What about the covariant functor F(E,−)? If E = S, then this would
be homotopy; is it worth it to call F(E,−) “E-homotopy”?

Let’s get back to spaces for a second. Then we have this other duality: just as spheres have
simple cohomology (and hard homotopy) and co-represent homotopy, Eilenberg–Mac Lane
spaces have simple homotopy (and hard cohomology) and represent cohomology. From the
former you build all CW-complexes, and from the latter you can make Postnikov towers. So
they are all very fundamental, and from this point of view, cohomology is actually dual to
homotopy. Homology is a bit funky from this perspective: if you want to get it from Eilenberg–
Mac Lane spaces, you can’t do better than H̃n(X; G) ∼= colimkπn+k(K(G, k) ∧ X).

Finally, recall that if k is a field, then H∗(X; k) is the vector space dual to H∗(X; k).
This is a lot to digest, and it’s not clear how it all glues together cleanly. Let me just offer

you some interesting reads. MO: What is homology, anyway? (with answers by Lurie, Scholze
and Shulman), the very abstract nLab: cohomology, the more accessible nLab:Eckmann–Hilton
duality, and n-Category café: Cohomology and homotopy (with lots of interesting comments).

Notice how (co)homology theories, by definition, invert suspension, in a sense. Since
spectra are meant to universally invert the suspension functor2, we expect there to be a dotted
arrow making the following diagram commute, for any spectrum E:

CW∗
En(−)

//

Σ∞

��

Ab

Sp

<<

This is what we have seen above: the dotted arrow is none other than πn(E ∧−). If we hadn’t
introduced the smash product in Section 4, we wouldn’t be able to write such a nice diagram.

We can now wonder about the following: why precompose πn(E ∧−) with Σ∞?

Definition 7.14. Let E be a spectrum. For n ∈ Z, define En(−) : Sp → Ab as πn(E ∧ −), and
En(−) : Sp→ Ab as π−nF(−, E).

If E = HZ, we denote En(X) by Hn(X), and similarly for cohomology.

Thus, for X ∈ Top∗, we have En(X) = En(Σ∞X) by definition.
There is an axiomatic definition of (co)homology theories on spectra, similar to that on

pointed CW-complexes. See [Rud98, 3.10]. You’d then prove that E∗ and E∗ satisfy these ax-
ioms.

And once we have such definitions, we can finally correctly formulate the question posed
at the end of Section 1. Let h∗ : Ho(Sp) → GrAbZ be a cohomology theory in spectra. Then
there exists a spectrum E such that h∗ ∼= HomHo(Sp)(−, E)−•. This is enriched representability

2You are probably wondering: did we actually prove that? Not really, we didn’t. But it’s doable with some
more technology, see Section 2.

https://mathoverflow.net/questions/277069/what-is-homology-anyway
http://nlab-pages.s3.us-east-2.amazonaws.com/nlab/show/cohomology
https://ncatlab.org/nlab/show/Eckmann-Hilton+duality
https://ncatlab.org/nlab/show/Eckmann-Hilton+duality
https://golem.ph.utexas.edu/category/2009/06/cohomology_and_homotopy.html
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of h∗, modulo the minus sign, which was just a matter of convention.3 A full proof, which uses
Brown representability, can be found in [Rud98, III.3.21].

Remark 7.15. (1) If you stop and think about what we are doing, your head may start to
spin: so, we defined spectra thinking of them as (objects representing) cohomology
theories. Cohomology theories are functors applied to spaces. But now we’re saying
that we can think of cohomology theories applied to spectra. A cohomology theory
applied... to a cohomology theory!? Moreover, switching to homology for a second, if
E and X are spectra, E ∧ X ' X ∧ E can be thought of as the E-homology object of X,
or as the X-homology object of E... What can I say? Such is the nature of spectra.

(2) Expanding on these thoughts, you would get a proof that the stable homotopy category
is equivalent to the category of cohomology theories on spectra. Is it equivalent to
the category of cohomology theories on pointed spaces/CW-complexes? No, it is
not. There exist maps of spectra E → F which are not nullhomotopic, but whose
induced map on cohomology theories is zero. So while the correspondence spectra
– (co)homology theories works pretty good, this is not the case for their maps, and
therefore their categories. This is closely related to the existence of phantom maps, see
e.g. [Rud98, Chapter 3].

We finish with some words from Eric Peterson: “Spectra are an enrichment of homology
theories where homotopy theory can be done”.

2. The abstract construction of the stable homotopy category by Boardman

Boardman’s was one of the first really satisfactory constructions for the stable homotopy
category. It used high-level category theory at a time when category theory was still dismissed
as “abstract nonsense” by many mathematicians; perhaps that’s the reason Boardman’s ap-
proach did not gain much traction, especially because in the same manuscript he described a
more concrete approach, later further developed by Adams.

The starting observation is the following. Every abelian group is the filtered colimit of
its finitely presented abelian subgroups. Moreover, the finitely presented abelian groups are
exactly the compact objects of Ab. Here, an object c ∈ C is compact, also called “finitely pre-
sentable”, if HomC(c,−) preserves filtered colimits.4 These properties can be summarized by
saying that Ab is a locally presentable category whose compact objects are the finitely presented
abelian groups.

This implies another statement: Ab is equivalent to the ind-completion of its full subcat-
egory of finitely presented abelian groups.5 The ind-completion of a category is the formal,
universal adjunction of filtered colimits to it, see [KS06, Chapter 6], in particular 6.3.4 proves
the statement we just made. Similarly, the ind-completion of the category of finite (simplicial)
sets is equivalent to the category of all (simplicial) sets.6

3For the graded hom, we chose a sign that privileged homotopy, as in Corollary 6.8, but we could just as well
have put the opposite sign, and we would have gotten actual representability here, privileging cohomology.

4The terminology is a bit unfortunate in that compact objects in Top are not the compact topological spaces!
See MO/288648: the compact objects in spaces are the finite discrete spaces. This is related to the subtleties on
sequential colimits considered in Section 1.5. On the other hand, the compact objects in simplicial sets are the finite
simplicial sets, whose geometric realizations are (classical) compact spaces.

5It’s also equivalent to the ind-completion of finitely generated abelian groups.
6For spaces this doesn’t work because of the previous footnote. This can also be phrased as “Top is not a locally

presentable category”, which is one justification for preferring the category of simplicial sets to that of topological
spaces. For CW-complexes this also doesn’t work. While it is true that every CW-complex is the filtered colimit of its
finite CW-subcomplexes, if you take e.g. the comb space, this is the sequential colimit of finite CW-complexes but it
is not a CW-complex (it is not locally path-connected), so the ind-completion of the category of finite CW-complexes

https://mathoverflow.net/questions/288648/what-are-compact-objects-in-the-category-of-topological-spaces
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Bottom line: nice enough categories can be recovered from a subcategory of “finite” objects
via ind-completion. So, if we can build a satisfactory category of finite spectra, then we can take
its ind-completion as a definition for the category of spectra.

Finite spectra, which made a quick appearance in Section 3, can in turn be built categorically:
start with pointed, finite CW-complexes CWfin

∗ , and invert the suspension functor: that is, take
the colimit of7

CWfin
∗

Σ
// CWfin

∗
Σ
// CWfin

∗
Σ
// · · ·

This gives a category Spfin, and its ind-completion is a model for Sp. See [Vog70] for the
original description by Boardman, [LMSM86, Preamble] for a leisurely description of it, or
[Lur17, 1.4.(B)] for a more modern approach via ∞-categories where Lurie also explains how
this is equivalent to the limit of

· · · // CW∗
Ω
// CW∗

Ω
// CW∗

where “limit” is taken in an appropriate higher-categorical sense; this presentation is closer to
spectra being “infinite loop spaces”.

There is a natural question to be asked, here: why not bypass the ind-completion completely
and just invert the suspension functor on CW∗? Wouldn’t that give us a model for Sp directly?
Alas, that doesn’t quite work. We can do that, and it gives us something called the Spanier–
Whitehead category. It is important in its own right, but it’s actually too small to be the category
we really care about, e.g. it doesn’t have all coproducts; Brown representability breaks down.8

It does have historical importance (it predates the category of spectra), and is sometimes useful.
A classical development of it can be found in [Mar83]; a more high-brow development of it can
be found in [Lur18, C.1.1].

3. Some results around Eilenberg–Mac Lane spectra

Generalities. We already mentioned that the homotopy category of spectra is triangulated.
More is true: it has a t-structure. Instead of defining that precisely, let me mention a couple of its
features in this particular case. Just as we have connective spectra, we have coconnective spectra,
whose positive homotopy groups vanish. These two classes of spectra interact in a pleasant
way; an important feature here is that the heart of this structure, that is, the subcategory of
spectra which are both connective and coconnective, is an abelian category. This is actually true
in greater generality, e.g. for any stable model/∞-category with a t-structure [Lur17, 1.2.1.12].

Let’s be more explicit. In this case, the abelian category is none other than the category of
abelian groups, and the precise statement is that the functor

(7.16) π0 : HomHo(Sp)(X, Y)→ HomAb(π0X, π0Y)

is an isomorphism when X is connective and Y is coconnective. In particular,

π0 : HomHo(Sp)(HA, HB)→ HomAb(A, B)

is an isomorphism; its inverse is H, and thus H : Ab→ Ho(Sp) is fully faithful. Note that the
restriction of π0 : Ho(Sp)→ Ab to the subcategory of spectra with homotopy concentrated in

is bigger than the category of CW-complexes. Since every space is weakly equivalent to a CW-complex, we’d like
to say that the ind-completion of CWfin is equivalent in a homotopical sense to the category of spaces. This is true
e.g. ∞-categorically, as mentioned in this lecture of Lurie.

7If you don’t see how this colimit should invert Σ, do this: let A be an abelian group, let n ∈ Z, and take the
colimit of the multiplication-by-n map: prove it is isomorphic to the localization A[1/n]. Also, note that this is a
colimit only in an appropriate, higher-categorical sense.

8Reader beware: some authors call “Spanier–Whitehead category” what we have called Spfin above...

https://people.math.harvard.edu/~lurie/281notes/Lecture15-Wall.pdf
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degree 0 is an equivalence of categories. Finally, note that this proves uniqueness of Eilenberg–
Mac Lane spectra, in the sense that if X is a spectrum whose only non-trivial homotopy group
is π0(X) = A, then X is weakly equivalent to HA. Indeed, by (7.16) we get a unique morphism
f : X → HA in Ho(Sp) which induces an isomorphism in π0, hence it’s an isomorphism in
Ho(Sp) since both X and HA are connective and coconnective.

See [Sch, 5.24] for a proof of all this in the context of symmetric spectra; this is also in
[Lur17, 1.2] in the context of ∞-categories.

Side remark 7.17. In Side remark 3.43, we mentioned a certain connective spectrum denoted
ku, called the spectrum of connective topological complex K-theory. One can alternatively define it
as the connective cover of KU, i.e. ku is characterized by its being connective and there being
a map ku → KU which is an equivalence on non-negative homotopy groups. One concrete
construction of connective covers is in [Rud98, II.4.15].

The Hurewicz theorem. The Eilenberg–Mac Lane spectrum HZ plays a special role, as we
already know from the special role played by ordinary integral homology, witnessed by the
Hurewicz theorem most notably. One possible abstract reason for its importance is that it’s
the first non-trivial truncation of the sphere spectrum: similarly as in the previous section,
the inclusion of coconnective spectra into spectra has a left adjoint, and that functor takes the
sphere spectrum S to HZ. The unit of that adjunction is a map of spectra S→ HZ.

We can build that map very explicitly, though. For any n ≥ 0, we can choose maps Sn →
K(Z, n) which correspond to 1 ∈ Z ∼= πn(K(Z, n)) and are compatible with the structure maps.
This defines a map of spectra τ : S→ HZ called the Hurewicz morphism.

If n ∈ Z, a spectrum X is called n-connected if πk(X) = 0 for all k ≤ n. We can now state the
stable Hurewicz theorem:

Theorem 7.18 (Stable Hurewicz). Let n ∈ Z and X be an n-connected spectrum. Then the integral
homology groups of X below level n + 1 are trivial, and τ ∧ id induces an isomorphism of abelian groups

πn+1(X) ∼= πn+1(S∧ X)
(τ∧id)∗

∼=
// πn+1(HZ∧ X) ∼= HZn+1(X).

There are different ways to prove this. The one adopted by [Sch, II.6.30] is a direct con-
sequence of the second paragraph of Remark 6.16: since X is n-connected and HZ is (−1)-
connected, this gives an isomorphism π0(HZ)⊗ πn+1(X) → πn+1(HZ ∧ X), and one checks
that this is precisely the isomorphism above.

Another way to prove it passes via the theory of finite spectra, which unfortunately we
didn’t have the time to explore in these notes. Just as any abelian group is the filtered colimit
of its finite subgroups, and any CW complex is the filtered colimit of its finite subcomplexes,
we have that any cell spectrum is the filtered colimit of its finite cell subspectra.9 But we didn’t
define what’s a finite spectrum. There are different characterizations; the most concrete one
is probably that it’s a spectrum isomorphic in Ho(Sp) to one of the form ΣnΣ∞K where K is a
finite pointed CW-complex and n ∈ Z. More abstractly, the finite spectra are precisely the small
objects in Ho(Sp), where X is small if HomHo(Sp)(X,−) preserves direct sums. For details and
other characterizations, see [Sch, II.7.2]. The fact that any cell spectrum is the filtered colimit
of its finite cell subspectra is proven similarly as for spaces; a reference is [EKMM97, III.2.3].
Combining this approximation of a spectrum by finite spectra with the Hurewicz theorem for
spaces, you can prove stable Hurewicz. This was mentioned in this m.SE answer, where a
pointer to another more hands-on proof is also given. The latter hands-on proof is explained in
full detail in [Rud98, II.4.7] in the setting of Adams’ CW-spectra.

9You may want to read up on locally presentable categories, and/or on combinatorial model categories.

https://math.stackexchange.com/questions/2591051/is-there-a-stable-hurewicz-theorem
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Bockstein morphisms. As promised at the end of Section 2, we now give examples of maps
which in classical algebra are injective or surjective, but when transported to the world of
spectra, they have interesting fibers and cofibers.

If 0→ A→ B→ C → 0 is a short exact sequence of abelian groups, then HA→ HB→ HC
is a cofiber sequence of spectra. This is proven in [Sch, 5.28]. The cofiber map δ : HC → ΣHA
is called the Bockstein morphism.

If X is a pointed space, this gives a natural morphism in homology (and similarly in coho-
mology)

H̃n(X; C)→ H̃n−1(X; A).

This is the classical Bockstein homomorphism that you may already be acquainted with, e.g.
from [Hat02, 3.E]. A particularly important example is given by the sequence

0→ Z/p
·p−→ Z/p2 → Z/p→ 0,

in which case the classical Bockstein homomorphism is given by maps

H̃n(X; Z/p)→ H̃n−1(X; Z/p).

In conclusion, the map HC → ΣHA is really the spectral version of the Bockstein homo-
morphism.

Other results. See [Sch, II.6.2] and [EKMM97, Chapter IV] for many other elementary re-
sults of spectra which generalize known results in spaces, like the Künneth theorem or the
universal coefficient theorem (of which we will say a bit in Proposition 7.21). We quickly
mention [Sch, 6.30.ii] which generalizes the homology Whitehead theorem. If f : X → Y
is a morphism of bounded-below spectra (this means that below a certain level, the homo-
topy groups are zero), then f is a weak equivalence if and only if it is an integral homology
equivalence, i.e. it induces isomorphisms on HZ∗.

4. Moore spectra

Recall that a Moore space of type (G, n), denoted M(G, n), is a pointed CW-complex that
has the property that all its reduced integral homology groups are zero except in degree n ≥ 1
where it is an abelian group G. They are, in a sense, the integral homology counterparts to
Eilenberg–Mac Lane spectra. See [Hat02, 2.40].

The easiest Moore space to construct is M(Z/m, n). Indeed, take a degree m map fm :
Sn → Sn, and define M(Z/m, n) to be its homotopy cofiber. In other words, we are attaching
a Dn+1 to Sn via a degree m map. The result follows by the long exact sequence in homology
associated to this cofiber sequence. You could say that we have realized the short exact sequence

0 → Z
·m−→ Z → Z/m → 0 homologically in degree n as the cofiber sequence Sn fm−→ Sn →

M(Z/m, n). Having this example, and realizing that Sn is an M(Z, n), we can build all the
M(G, n) where G is finitely generated, and for the general case you need to take a presentation
of G.

Now, Moore spaces allow us to introduce coefficients in homology at the space level:

H̃n(X; G) ∼= H̃n(X ∧M(G, n); Z).

This follows from the Künneth theorem [Hat02, Page 277].
A construction of H∗(−; G) is no harder than that of H∗(−; Z) (say, in singular homology),

but what if we want to introduce coefficients in an arbitrary homology theory? Then the road
via Moore spectra seems to be more reasonable.

Proposition 7.19. Let G be an abelian group. There exists a spectrum SG, the Moore spectrum of G,
satisfying the following properties:
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(1) SG is connective,
(2) π0(SG) = G = H0(SG; Z),
(3) Hi(SG) = 0 for all i 6= 0.

These properties determine SG uniquely up to equivalence.10

Example 7.20. S is an SZ. The spectrum SZ/p can be built like this: take a map S → S of
degree p in Ho(Sp), something we have already constructed in different ways, and complete it
to a distinguished triangle. Now take the third term in the sequence, which is usually denoted
by S/p.

In general, you can build an SG simply as Σ∞−n M(G, n), as you can very easily check.

Now, if E is a spectrum and G is an abelian group, we can call E ∧ SG the spectrum of E-
homology with coefficients in G. To justify this, we can state the following proposition, which is
not hard to prove from the description of SG as fitting in a distinguished triangle.

Proposition 7.21 (Universal coefficient theorem). Let X and E be spectra and G be an abelian group.
For every n ∈ Z there is a short exact sequence

0 // En(X)⊗ G // (E ∧ SG)n(X) // TorZ
1 (En−1(X), G) // 0

which need not split. In particular, if G is torsion-free, then (E ∧ SG)n(X) ∼= En(X)⊗ G.

There is a similar theorem for cohomology, but you need to add some finiteness assump-
tions for it to work, see [Ada74, III.6.6].

Example 7.22. If E = S and G = Z/p, then we have short exact sequences

0 // πn(X)
pπn(X)

// (S/p)n(X) // pπn−1(X) // 0

where p A denotes the subgroup of p-torsion elements (those a ∈ A such that pa = 0).
You can see how Moore spectra are related to the question of topological realization of

algebraic operations on homotopy groups (or on more general homology groups). We can
ask ourselves: can we realize the quotients πn(X)/pπn(X) as En(X) for some E? What about
the πn(X)[1/p]? Or the localizations πn(X)(p)? We could also have asked those question for
spaces, by the way. These are important questions but we shall not address them here, see
[Bou79], or [MP12, Part 2] for the theory for spaces, or [Sch, II.9] for the theory for spectra.

An important case is worth mentioning: when R is a localization of Z at a set of primes,
then the localization of a spectrum X at R is X ∧ SR. For example, if we take R = Z(p), the
localization of Z at p (invert all other primes), then the localization of X at p is X ∧ SZ(p). It
satisfies that

π∗(X ∧ SZ(p)) ∼= π∗(X)⊗Z(p)
∼= π∗(X)(p).

Going forward, other, more refined localizations are part of a bigger problem to describe
the stable stems: that of chromatic homotopy theory. See [BB20] for an introduction.

Example 7.23. One advantage of seeing topological K-theory as a spectrum is that we can use
all the operations that are available to us. For example, we could use Moore spectra to introduce
coefficients. Or we could easily build a mod p version: take the degree p map p : S → S and

smash it with KU, getting p : KU ' KU ∧ S
id∧p−−→ KU ∧ S ' KU. Now take its cofiber, which

you can denote KU/p. Something interesting happens to this when p is an odd prime: it splits,

KU/p '
p−2∨
i=0

Σ2iK(1)

10But S is not really a functor, in general. See [Sch, II.6.44] for details.
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where K(1) is an important spectrum called the 1-st Morava K-theory spectrum at the prime p.
This was first proven in [Ada69] and is a foundational result of chromatic homotopy theory, see
[BB20] for an introduction.

5. Thom and cobordisms

5.1. Spherical fibrations. We can turn real vector bundles into a more topological object:
a spherical fibration. It suffices to one-point compactify all the fibers: if Rn → E → B is a
vector bundle, then we can build a Hurewicz fibration Sph(E)→ B whose fibers are homotopy
equivalent to Sn; we shall write this as Sn → Sph(E)→ B.

Note, moreover, that the fibration thus obtained has a section: choosing the points at infinity
gives us a map ∞

Sn Sph(E) B
p

∞

such that p ◦∞ = idB. So let us forget about vector bundles for now and think of objects as
above: spherical fibrations with a section, or, following the terminology of [Rud98], sectioned
spherical fibrations. The examples of vector bundles and sectioned spherical fibrations are two
examples of a more general theory, see [Rud98, Chapter IV].

We have already recalled that the set of isomorphism classes of n-plane complex vector
bundles over B is in bijection with [B, BU(n)]. An analogous theorem is true for sectioned
spherical fibrations. First, define a sectioned homotopy over B from E1 → B to E2 → B to be a
homotopy of maps E1 → E2 such that at any time t it is a map over B, and it is compatible with
the sections. The resulting notion of homotopy equivalence is called sectioned fiber homotopy
equivalence; note that indeed the induced maps on fibers are homotopy equivalences as well.
Dold and Lashof [DL59] remarked that this is equivalent to it. In fact, if both maps over B are
fibrations, then a map E1 → E2 is a fiber homotopy equivalence as soon as it is a homotopy
equivalence [May99a, Page 52].

Let F(n) denote the topological monoid of pointed homotopy self-equivalences of Sn, then
the set of sectioned fiber homotopy equivalence classes of sectioned spherical fibrations over
B is in bijection with [B, BF(n)], via the existence of a universal sectioned spherical fibration.
11 The classification of fibrations is harder than the classification of locally-trivial bundles and
took some years to set up in full. An important early reference is [May75].

We have explained above how to construct the Whitney sum of vector bundles. There is an
analogous construction for sectioned spherical fibrations, where the fibers get smashed: given
two of them Sn → E → B and Sm → E′ → B, you can build a a new sectioned spherical
fibration Sn+m ∼= Sn ∧ Sm → E ⊕ E′ → B [Rud98, IV.1.4(g)]. We also have trivial sectioned

spherical fibrations Sn → X× Sn εn
−→ X.

Similarly to Vect(X), we have a commutative monoid S(X) of sectioned spherical fibrations
and we can take its Grothendieck group. It is denoted KF(X) e.g. in [Ada78]. Analogously for
K-theory, we can define K̃F(X) for pointed X and, if X is compact, then any sectioned spherical
fibration has a complement, and K̃F(X) is isomorphic to the group of stable fibrewise homotopy
equivalence classes of sectioned spherical fibrations over X. When X is moreover connected,
this is isomorphic to [X, BF]. Here BF is built as follows: consider the maps F(n)→ F(n + 1),
which take a pointed homotopy equivalence Sn → Sn to its suspension. This gives maps
BF(n)→ BF(n + 1). Define BF = colimnBF(n).

11I think the letter F comes from “fibration”, to remind us that we are classifying fibrations instead of the more
structured locally-trivial maps.
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When X is not connected, one can do something similar to Remark 3.57, so we are going
to call any map X → BF a stable spherical fibration.12 Alternatively, we can think about it as a
virtual spherical fibration of dimension zero over every point. With more technology, we would
be able to justify why we can also think of it as a map to X whose fibers are sphere spectra up
to weak equivalence, see e.g. the introduction to [ABG+14a]. In general, for compact X we
have KF(X) ∼= [X, BF×Z].

The real K-theory group KO(X) and KF(X) are related by the construction given at the
beginning of the section. We can build a map of commutative monoids VectR(X) → S(X)

which takes a real vector bundle and compactifies all the fibers, so we get an induced map on
Grothendieck groups KO(X)→ KF(X) which induces J : K̃O(X)→ K̃F(X). This is one instance
of the famous J-homomorphism of Adams.

Proposition 7.24. The homotopy groups of BF are:

πi(BF) =


0 if i = 0

Z/2 if i = 1

πi−1S if i ≥ 2.

PROOF. From the definition of B, we have π0(BF) = 0.If i ≥ 1, then

πi(BF) = πicolimnBF(n) ∼= colimnπiBF(n) ∼= colimnπi−1F(n).

Note that F(n) ' Ωn
±1Sn, i.e. the union of the two connected components of ΩnSn correspond-

ing to the maps of degree 1 or -1. Therefore,

π1(BF) ∼= colimnπ0(F(n)) ∼= Z/2.

If i ≥ 2, then

πi(BF) ∼= colimnπi−1F(n) ∼= colimnπi−1Ωn
±Sn

i≥2∼= colimnπi−1ΩnSn ∼= colimnπi−1+nSn = πi−1S.
�

An important particular case of the J-homomorphism appears when X = Sn, for n ≥ 2.
Then J : K̃O(Sn)→ K̃F(Sn). The domain is

K̃O(Sn) ∼= [Sn, BO] ∼= πn(BO) ∼= πn−1(O),

whereas the codomain is

K̃F(Sn) ∼= [Sn, BF] ∼= πn(BF) ∼= πn−1(S).

So we get maps
J : πn(O)→ πn(S), n ≥ 1.

The domain is completely computed (that’s the real Bott periodicity theorem). Computing the
codomain is hard, as we already know, but it turns out that the image of this map, the so-called
image-of-J, is computable. This is foundational work of Adams and Quillen: it computes a
chunk of the stable stems. Note how the strategy changes: we don’t proceed homotopy group
by homotopy group. A good summary can be found in [Mat12]. This is one of the first steps in
the computational program of chromatic homotopy theory, which we have already mentioned
in passing.

Another important instance of the J-homomorphism is given at the level of the representing
spaces. For example, you have a map O(n) → F(n) which takes an isometry of Rn and one-
point compactifies it, giving you a basepoint-preserving homotopy equivalence of Sn. This is

12You might be wondering what happened to the sections in this terminology. It turns out they become
irrelevant in the stable setting... See [Rud98, IV.4.24].
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compatible with the structure maps on both sides, so taking colimits and applying B we get a
map BO→ BF also called the J-homomorphism.

Side remark 7.25. The Z/2 in π1(BF) should be understood as the units of Z, i.e. GL1(Z).
The space BF (which is an infinite loop space, hence, equivalently, a connective spectrum, as
mentioned e.g. in Side remark 4.15) is a spectral enhancement of that, under realization of
Z as π0(S). A bit more precisely, consider the canonical map QS0 → π0(QS0) ∼= π0S ∼= Z

which takes a point to its connected component, and consider the inclusion of the units Z/2 ∼=
GL1(Z) → Z. Now take the homotopy pullback of these two maps to Z in Top: you get a
space denoted GL1(S) which is equivalent to F. This is a result from the late seventies by May
and collaborators, but see [ABG+14a] and the references therein. GL1(S) is, in other words, the
union of the components of QS0 which correspond to units in π0(S).

On a different note, recall Side remark 3.43: the connective complex K-theory spectrum ku is
the connective spectrum associated to the infinite loop space BU×Z, and it is obtained starting
from the symmetric monoidal topological category of finite-dimensional complex vector spaces.
We could do something similar here. Consider the category whose objects are pointed spheres,
and whose maps are based homotopy equivalences. It is topological and symmetric monoidal
with ∧. The machine begets the E∞-space

⊔
n BF(n), whose group completion is the infinite

loop space BF×Z, whose associated connective spectrum is also known as the Picard spectrum
of S, whose connected components are equivalent to BF.

5.2. Thom spaces.

Definition 7.26. The Thom space of a sectioned spherical fibration

Sn X B
p

∞

is defined to be X/∞(B), i.e. the (strict) cofiber B ∞−→ X → Th(p). It is pointed by [∞(b)] for
any b ∈ B.

So the Thom space identifies all the points at infinity.
For simplicity, the Thom space of the sectioned spherical fibration associated to a real

vector bundle ξ is just denoted Th(ξ). When B is compact, then Th(ξ) can be identified with
the one-point compactification of X.

Example 7.27. The Thom space of a sectioned spherical fibration is a generalization of the
iterated suspensions of a space. Indeed, the Thom space of the sphere bundle associated to the
trivial n-plane vector bundle over B is homeomorphic as a pointed space to ΣnB+.

The intuition is that a sectioned spherical fibration is a twist of B, and that the Thom space
is like a suspension of B, twisted accordingly.

So the suspension isomorphism in this trivial case gives us that

H̃∗(Th(Sph(B×Rn → B))) ∼= H∗−n(B).

Now, what happens to the above isomorphism when we consider any sectioned spherical
fibration? To give a full answer to that would be too much of a detour, so we will be very quick
about it. There is a theory of orientations13 of sectioned spherical fibrations. For example, the
(spherical fibration associated to the) tangent bundle of a manifold is orientable if and only if
the manifold is orientable.

Theorem 7.28 (Thom isomorphism). If Sn → X
p−→ B is an orientable sectioned spherical fibration,

then there is an isomorphism
H̃∗+n(Th(p)) ∼= H∗(B).

13HZ-orientations: they can be generalized to any ring spectrum.
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5.3. Thom spectra. Let f : X → BF be a map, i.e. a stable spherical fibration, as we have
explained before. Let Xn be f−1(BF(n)). Define fn : Xn → BF(n) as fn(x) = f (x). Thus, we
have a commutative ladder like this:

X0 X1 · · · Xn Xn+1 · · · X

BF(0) BF(1) · · · BF(n) BF(n + 1) · · · BF

i0 ini1

ff0 f1 fn fn+1

Now, consider the universal sectioned n-spherical fibration γn+1 : En+1 → BF(n + 1). Pull
it back along fn+1, and denote the corresponding fibration by f ∗n+1(γn+1) : Pn+1 → Xn+1. Pull
it back along in:

Pn ⊕ (Xn × S1) Pn+1 En+1

Xn Xn+1 BF(n + 1)

γn+1

fn+1

f ∗n+1(γn+1)
y

in

f ∗n (γn)⊕ε1

hn

y

Exercise 7.29. Prove the claim in the above diagram: namely, if you take the pullback on the left, then
you can identify it with that Whitney sum. Hint: first prove it for the universal case, namely

En ⊕ (BF(n)× S1) En+1

BF(n) BF(n + 1).

γn+1γn⊕ε1
y

Here’s another observation: if p : E→ B is a sectioned spherical fibration, then

Th(p⊕ ε1) ∼= ΣTh(p).

In this context, it’s an exercise in [Rud98, IV.5.5]; in the context of vector bundles, it’s explained
in [Swi75, Page 229].

Now that we have these two observations at hand, we can make the following definition:

Definition 7.30. The Thom spectrum M f of a stable spherical fibration f : X → BF is defined as
follows: M fn := Th( f ∗n (γn)), and the structure maps are given by14

ΣM fn = ΣTh( f ∗n (γn)) ∼= Th( f ∗n (γn)⊕ ε1)
Th(hn)−−−→ Th( f ∗n+1(γn+1)) = M fn+1.

Example 7.31. It follows from the definitions that M(∗ → BF) ∼= S.

Remark 7.32. The original definition of a Thom spectrum concerned maps X → BO. The gen-
eralization above was suggested by Mahowald and first worked out by Lewis in [LMSM86];
there are also more modern, ∞-categorical approaches, most notably in [ABG+14a]. This clas-
sical Thom spectrum of a map X → BO is equivalent to our Thom spectrum of its composition
with the J-homomorphism BO→ BF.

Example 7.33. Some of the most important Thom spectra are the “universal” ones. We have
the following chain of maps of spaces:

BSU BU BSO BO BF
J

14There is a notation clash below: Th(hn) does not mean the Thom space of some fibration called hn, but rather
the functor Th applied to the map of sectioned spherical fibrations hn.
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(1) We can take MO := M(BO
J−→ BF). Setting up everything carefully [Rud98, IV.5.12.(e)],

we have that the n-th space is the Thom space of the universal real n-plane vector bun-
dle, MOn ' Th(En → BO(n)). Thom proved in 1954 that MO is actually a generalized
Eilenberg–Mac Lane spectrum: MO ' Hπ∗(MO), and

π∗(MO) ∼= Z/2[xn : n ≥ 2, n 6= 2t − 1, |xn| = n].

See [Koc96, 3.7.6], [Rud98, IV.6.2], [Pet19, 1.5.7, 1.5.8].
(2) Similarly, we can define MU := M(BU → BO

J−→ BF). This is not a generalized
Eilenberg–Mac Lane spectrum. It is a very important player in the aforementioned
chromatic homotopy theory, and in the connection between algebraic topology and
algebraic (formal) geometry of e.g. [Pet19].15 It is fundamental to the notion of complex-
oriented cohomology theory [Hop99], [Rud98, Chapter VII], closely related to the theory
of Chern classes. For example, from this theory one gets maps of spectra MU → HZ

and MU → KU, the latter of which appears in the formulation of the Conner–Floyd
isomorphism relating the KU-cohomology and the MU-cohomology of a finite CW-
complex.

It was proven by Milnor in 1960 and later improved by Quillen in 1967 that
π∗(MU) ∼= Z[yn+1 : n ≥ 0, |yn+1| = 2(n + 1)] [Koc96, 4.4.13], [Pet19, 2.6.5].

Similarly to what happened with KU (see Example 7.23), the localization of MU
at the prime p, which is MU ∧ SZ(p) as we mentioned in Section 4, splits as a wedge
of suspensions of a spectrum called BP, the Brown-Peterson spectrum at the prime p.
This is another foundational result of chromatic homotopy theory. See [Rav86, 4.1.12],
[Rud98, Page 415].

(3) We can also consider the oriented or “special” variants (hence the capital “S”). For
example, the special orthogonal group SO(n) of isometries of Rn that preserve ori-
entation (i.e. that have determinant 1) is included in O(n), thus getting the map
BSO → BO. You can produce an injection of U(n) into SO(2n). The group BSO(n)
classifies oriented n-plane real vector bundles. The special unitary group SU(n) is
definied similarly. This gives the Thom spectra MSU and MSO. These are also not
weakly equivalent to generalized Eilenberg–Mac Lane spectra, even though [Ada74,
Page 208] says MSO is, without proof. He was probably thinking of the localization of
MSO at the prime 2, MSO(2), which does satisfy this [Rud98, IV.6.5].

(4) We end by quoting a surprising result by Mahowald and Hopkins. The Eilenberg–
Mac Lane spectra HZ and HZ/p are equivalent to Thom spectra! There exists a map
Ω2S3 → BO whose Thom spectrum is equivalent to HF2 (Mahowald); something
similar is true at other primes (Hopkins), but for a map not even to BF, but to BF(p)
(we didn’t define this at all); finally, gathering them together, one gets that HZ is the
Thom spectrum of a map to BF (Hopkins).

A classical, textbook proof of Mahowald’s result can be found in [Rud98, IX.5.8]; a
modern one encompassing the extensions by Hopkins is in [ACB19].

Exercise 7.34. Let f : X → BF(n) be the classifying map for a sectioned spherical fibration. Prove that

M(X
f−→ BF(n)→ BF) ' Σ∞−nTh( f ).

15It is hard to understate this importance! See e.g. the paragraph “Why formal groups?” of section B.2 of
Peterson’s book, where the author concludes with “surprise and confusion” at the fact that this spectrum has its
origins in manifold geometry. I share this feeling.
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5.4. Unoriented cobordism. Some references: [Sto68], [DK01], [Koc96], [Mil01], [Rud98].
If M is a smooth manifold and M → BO(n) is a classifying map for its tangent bundle,

then a lift of this map to BSO(n) is equivalent to a choice of orientation on M; similarly, a lift
of M→ BO(2n) to U(n) is akin to an almost-complex structure on M, etc. So you see how the
theory of manifolds can enter the game, via their tangent bundles. Let’s explore this further.
The exposition will be sketchy as we intend to provide a mere glimpse: one could make a whole
course or two on cobordism theory! “Manifold” will mean “compact smooth manifold with
boundary”, and ∅ is a manifold of all dimensions.

Definition 7.35. Let M, N be n-manifolds. A cobordism16 between M and N is an (n + 1)-
manifold B such that ∂B ∼= M t N. If there exists such a cobordism, we say M and N are
cobordant.

More generally, if X is a space and f : M → X, g : N → X are two maps, a cobordism
between them is an (n + 1)-manifold B and a map F : B → X such that ∂B ∼= M t N and F
restricted to the boundary gives f t g. In this case, we say that f and g are cobordant.

To recover the former from the latter, just take X = ∗.

Proposition 7.36. “Cobordism” is an equivalence relation, and the quotient ΩO
n (X) of the set {M→

X : M n-manifold} by the cobordism relation is an abelian group of order 2, with sum given by the
disjoint union, and neutral element given by ∅→ X.

In particular, ΩO
n (∗) is the abelian group of equivalence classes of n-manifolds up to cobordism.

PROOF. Reflexivity: consider M× I. Symmetry is easy. Transitivity: you need to use the
collar neighborhood theorem to glue the cobordisms.

Associativity, commutativity and unitality of t are easy. As for the inverses, if f : M→ X,

consider F : M× I → M
f−→ X. Then ∂F ∼= f t f , so [ f ] has an inverse and it is actually [ f ],

hence ΩO(X) has order 2. �

Note that an element in ΩO
n (∗) is zero if it is null-cobordant, i.e. it is the boundary of some

other manifold. An example of one such manifold is given by the real projective plane; see MO:
Examples of manifolds that are not boundaries.

We can identify this group with something we have already introduced.

Theorem 7.37 (Pontryagin-Thom). For a space X, there is an isomorphism

ΩO
∗ (X) ∼= MO∗(X+),

and thus cobordism is an unreduced homology theory. Taking X = ∗, we deduce that ΩO
∗ (∗) ∼=

π∗(MO).

Thus, the geometrical object given by the abelian group of n-manifolds up to cobordism
gets identified with a stable-homotopy-theoretical object, π∗(MO), which can be computed
using homotopical tools.

Remark 7.38. Recall how singular homology is defined: you want to probe the space X with
simplices ∆n. The set of continuous functions ∆n → X is not an abelian group, so you take the
free abelian group on this, and these fit into a chain complex of abelian groups out of which
you take homology.

Now, suppose we want to probe X with manifolds, instead. Consider

An(X) = {Z → X : Z compact manifold with boundary of dimension n}.

16Also called bordism; confusingly, the prefix co does not signal a duality here.

https://math.stackexchange.com/a/1385734/2614
https://math.stackexchange.com/a/1385734/2614
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This is a cancellative commutative monoid with the disjoint union as sum and the map ∅→ X
as unit. Note that the disjoint union of two such manifolds is again such a manifold, which
didn’t work for simplices: the disjoint union of simplices is not a simplex.

Now, define a boundary map ∂ : An(X) → An−1(X). It takes Z → X to the restriction to
the boundary, ∂Z → X. It is a morphism of commutative monoids. Moreover, ∂2 = 0, so this
forms a chain complex of commutative monoids.

You can then observe that ΩO
n (X) is the n-th homology of the above complex (properly

interpreted).
This description of cobordism via chain complexes does not violate Remark 7.10, because

these are not chain complexes of abelian groups but of commutative monoids. It is due to
[Koc78], I learned about it from [Pet19].

5.5. Other cobordisms. We can generalize the cobordisms above, which are after all not
too interesting from a homotopical perspective, since MO is a generalized Eilenberg–Mac Lane
spectrum. For example, we may want to consider what happens when we take orientations
into consideration. More generally:

Definition 7.39. Let π : B → BO be a map.17 A π-structure on a manifold M is a homotopy
class of lifts of a map ν : M→ BO classifying its stable normal bundle (recall Remark 3.54):

B

M BO

π

ν

Remark 7.40. We could have considered the stable tangent bundle, see MO:141267. One reason
to prefer the stable normal bundle is that it’s generalizable to contexts other than manifolds
which have stable normal bundles but no stable tangent bundles, e.g. Poincaré spaces (spaces
for which Poincaré duality is valid, essentially). Another reason is that it makes the construction
of the Pontryagin–Thom map in Theorem 7.44 easier, notably because of the use of the tubular
neighborhood theorem which privileges normal bundles.

Side remark 7.41. You may be wondering what happens if you take the Thom spectrum of
the stable normal bundle ν : M → BO of the manifold M; let us suppose M has no boundary.
You get something very interesting: the Spanier–Whitehead dual of Σ∞

+M. This phenomenon is
called Atiyah duality; a textbook proof can be found in [Rud98, V.2.3], see also [Ada74, III.10].
Combining Atiyah duality with a Thom isomorphism similar to Theorem 7.28 but for Thom
spectra, one gets a spectral proof of Poincaré duality. See [BG99] for a survey of these dualities
and others.

Example 7.42. An important source of examples is given as follows. Let {Gn} be a sequence
of topological groups with maps Gn → Gn+1 and morphisms Gn → O(n) making the obvious
squares commute. After applying B, we get a map π : BG → BO, where G = colimnGn. We
call a π-structure on a manifold M a G-structure.

(1) Let Gn = O(n) with the obvious structure maps. Then the set of manifolds with
O-structure is the same as the set of manifolds.

(2) Let Gn = ∗ with the obvious structure maps. Then a ∗-structure on a manifold M is
equivalent to a framing of its stable normal bundle, i.e. an isomorphism between ν

and the trivial bundle. This amounts to a stable framing of some normal bundle, i.e.
a trivialization of a sum of it with a trivial bundle. We could have equivalently taken
the stable tangent bundle, see [DK01, 8.13].

17We don’t take maps to BF in this section. I’m not aware of a geometric Thom theorem for them as below.
Also, note that this, or a variation of this, is often called a (B, f )-structure in the literature.

https://mathoverflow.net/questions/141267/bu-f-structures-on-manifolds-via-stable-normal-bundles-and-stable-tangent-bu
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(3) Let Gn = SO(n) with the obvious structure maps. Then an SO-structure on a manifold
M is equivalent to an orientation of it.

(4) Include U(n) into O(2n), getting a map BU → BO. A U-structure on a manifold M
endows it with a stable almost-complex structure: an almost-complex structure in the
stable normal bundle. This amounts to an almost-complex structure on the sum of a
normal bundle with a trivial bundle, i.e. its fiber vector spaces have a complex action.

(5) We can also consider SU, getting oriented stable almost-complex structures. All of these
are related via maps

∗ SU U SO O.

Remark 7.43. Recall the concept of a G-principal bundle for a topological group G: it’s a map
E → X where E has a right G-action and X is locally trivial with trivializations which are
G-maps; the fibers are G-sets and the action is free and transitive, i.e. they are G-torsors.

There is a bijection between isomorphism classes of n-plane real vector bundles ξ : E→ X
over X and isomorphism classes of GLn(R)-principal bundles p over X, which takes ξ to
E ×GLn(R) Rn (change of fiber to Rn) and takes p to its frame bundle (the fiber over x is the
GLn(R)-set of the fiber of ξ over x).

If X is a paracompact Hausdorff space, then the set of isomorphism classes of O(n)-
principal bundles is also in bijection with the above.

If G ⊆ O(n) is a topological subgroup, there is a similar theorem as above, using the concept
of a fiber bundle with structure group, see [DK01, 4.4]. A fiber bundle with structure group
GLn(R) and fiber Rn is precisely an n-plane real vector bundle.

You can identify fiber bundles with structure group G in many cases. For example, if
G = SO(n), then if the fibers are Rn these are oriented real n-plane vector bundles. If G = U(n)
and the fibers are Cn, these are complex n-plane vector bundles; SU(n) is the oriented variant.

If H is a topological subgroup of G, then a principal G-bundle over X is induced from a
principal H-bundle by change of fiber if and only if the classifying map X → BG lifts to BH.
This gives a geometrical interpretation of the homotopical approach taken in Definition 7.39.

We should now introduce the equivalence relation of G-cobordism between G-manifolds.
We won’t do that carefully; see [Koc96, 1.5.1], [Rud98, IV.7.25], [Mil01, 1.3]. We will only
illustrate it with the example of SO, i.e. oriented cobordism. Here, manifolds are oriented, and
an oriented cobordism between two oriented n-manifolds is an oriented (n + 1)-manifold such
that its boundary (with the boundary orientation) is the disjoint sum of them. This defines
ΩSO

n (∗), and more generally, we can define the abelian group ΩSO
n (X) for a space X.

Considering orientations like this eliminates the Z/2 from Proposition 7.36. Indeed, if M is
an oriented manifold and we take M× I, now its boundary is not M tM but M t−M, where
−M has the opposite orientation.

More generally, if {Gn} is a system of groups as in Example 7.42, G = colimnGn and
BG → BO its associated map, then we can define ΩG

∗ (∗), and more generally ΩG
∗ (X). The

fundamental theorem is the following:

Theorem 7.44 (Thom). Let BG → BO be as above. There is an isomorphism

ΩG
∗ (X)

∼=−→ M(BG → BO
J−→ BF)∗(X+)

and thus G-cobordism is an unreduced homology theory. The map is the Pontryagin-Thom map. In

particular, ΩG
∗ (∗) ∼= π∗(M(BG → BO

J−→ BF)).

We can apply this to the examples above. For example, we can apply it to the trivial groups.
Then we get Ω∗∗(∗) ∼= π∗S: we reinterpret the stable homotopy groups of spheres as the abelian
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groups of stably framed manifolds up to stably framed cobordism (a manifold of one higher
dimension which is stably framed and whose framing restricts to the original ones upon taking
the boundary).

Thus, an element in πn(S) can be interpreted as a stably framed n-manifold. This point of
view lead to some early computations of stable homotopy groups. This uses geometry to de-
duce something from stable homotopy theory; nowadays, the other direction is more common
(cf. the recent Hill–Hopkins–Ravenel theorem on the Arf–Kervaire invariant [HHR16]).





CHAPTER 8

Introduction to brave new algebra

Classical algebra is the study of objects like abelian groups and rings. But even if one is
interested only in these classical objects, it is a fruitful idea to embed these categories into larger
ones were we can do new things. That is the idea of homological algebra/derived algebraic
geometry: embed abelian groups into their chain complexes. There, you have notions of quasi-
isomorphism, homotopy, projective resolution, etc., that allow us to define useful things like
Tor, Ext, or the derived category.

Instead of using chain complexes, we could use spectra, and working over S instead of over
Z gives us something more general. Many algebraic objects coming directly from homotopy
theory just don’t have chain representatives. Both approaches are linked, as we shall see.

We start with a categorical remark.

Remark 8.1. If (C,⊗, 1) is a symmetric monoidal category, then we can form the category of
commutative monoids CMon(C), which is also symmetric monoidal. We could also be looking
at plain monoids instead of commutative ones.

If A ∈ CMon(C), then we can form the category ModA(C) of (left) A-modules. If C is
closed (i.e. −⊗ X is a left adjoint for all X ∈ C), then there is a symmetric monoidal structure
(ModA(C),⊗A, A). The monoidal unit 1 is a commutative monoid, and its modules satisfy that
(Mod1(C),⊗1, 1) ∼= (C,⊗, 1). The category CMon(ModA(C)) is the category of commutative
A-algebras.

Example 8.2. (1) C = (Ab,⊗, Z). (Commutative) monoids here are (commutative) rings.
The category of Z-modules is equivalent to Ab.

(2) C = (ChZ,⊗, Z), the category of unbounded chain complexes of abelian groups with
its tensor product. Commutative monoids are called commutative differential graded (dg)
algebras, also known as cdgas.

(3) C = (D(Z),⊗L, Z), the derived category of Z with the derived tensor product. The
canonical functor ChZ → D(Z) is symmetric monoidal, so a cdga gets sent to a com-
mutative monoid in D(Z), but a commutative monoid in D(Z) is something generally
weaker.

(4) C = (Top,×, ∗). A commutative monoid in here is exactly a topological commutative
monoid.

(5) C = (Ho(Top),×, ∗). A commutative monoid in here is exactly a homotopy commuta-
tive H-group.

(6) C = (Ho(Sp),∧, S). A commutative monoid in here is a homotopy commutative ring
spectrum1, and we get that Ho(Sp) is equivalent to the S-modules. For coherence with
the case of chain complexes, ∧ should be denoted ∧L, and it should be called the
derived smash product, as it’s sometimes done.

1You may find it puzzling that this is called a “ring spectrum” and not a “monoid spectrum”. The reason is Side
remark 4.15: a connective spectrum is homotopically the same as an E∞-group, which is the higher-homotopical
version of an abelian group, so we already have one “additive” operation. It is also true that E∞-ring spaces
(undefined here) and connective E∞-ring spectra are equivalent, up to homotopy. See [May09a].
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Homotopy (commutative or not) ring spectra are useful for many things. For example, in
[Ada74, II.10] they are used in a study of duality. The multiplicative structures pass to homo-
topy: the homotopy of a (homotopy commutative) ring spectrum is a (graded-commutative)
graded ring and the homotopy of a module spectrum is a graded module over it.

However, these homotopy ring spectra are also for some purposes too little descriptive,
just as saying that a loop space is an H-space is too little descriptive (cf. Side remark 4.15).
Moreover, as we already know, the homotopy categories have lost too much information, so
much so that homotopy (co)limits can’t be formed in them.

So we would like to do with spectra something similar as with the chain complex examples
above: not only consider monoids and modules in D(Z) resp. Ho(Sp), but in ChZ resp. Sp.
The problem, as we know from Section 4, is that with our model of spectra we don’t have such
structure on Sp.

What is it that we want to achieve, really? Let us proceed more or less historically, as it
makes the motivations clearer. Let X ∈ Mon(Ho(Sp)), and suppose X is a cell Ω-spectrum.
Then, for example, associativity means a diagram

X ∧ X ∧ X X ∧ X

X ∧ X X

µ

µ

µ∧id

id∧µ

of spectra which is homotopy commutative, i.e. both maps X ∧ X ∧ X → X are homotopical.
What we would like to record and axiomatize is similar to what we had in Side remark 2.10.
For simplicity, suppose we are in spaces now. We can choose such homotopies for every space
X in such a way that, when we take four elements of X, and multiply them to an element of X
in the five different ways using the five homotopies induced from our choices before, this map
∂K × X4 → X can be filled to a map K × X4 → X, where K ⊆ R2 is a solid regular pentagon.
And this can be continued: we take five elements of X, etc.

The algebraic apparatus used to achieve this is an operad. An operad that encodes what we
hand-wavingly specified above is an A∞-operad. For example, one of the first A∞-operads used
in the setting of spectra was the linear isometries operad, see [May77, 1.1], [May09b, Section 2],
[EKMM97, II.4]. An algebra over this operad in our category Sp would be an A∞-ring spectrum
(or prespectrum, as May and collaborators would say). The notation A∞ stands for “associative
up to an infinite sequence of higher homotopies”.

The operad machinery also allows for modules. Just as an A∞-ring spectrum improves a
homotopy ring spectrum, a module over it2 improves a homotopy module spectrum. A word
of warning: different authors will use the words “ring spectrum” in different ways. They may
mean a homotopy one, or an A∞ one!

We may want to add “commutativity up to an infinite sequence of higher homotopies” –
we replace A∞ by E∞, then. Here the E stands for “homotopy everything”. Note that E∞ is
added structure, not merely a property (commutativity).

Remark 8.3. There are also An operads codifying homotopy associativity up to a sequence of
higher homomotopies up to level n. More commonly in stable homotopy theory are the En

operads: E1 is A∞, E2 means A∞ plus homotopy commutativity, E3 means A∞ plus coherent
homotopy commutativity up to a single higher homotopy, etc.3

2We should say: “A∞-module” but we will skip the A∞ to make it simpler.
3For defining En, you could get away with only having An+1, but this is usually an unnecessary complication.

See [Wil69].
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This machinery, sketched above for spaces/spectra, works in many other situations. One
can talk, for example, of E∞-spaces, or of chain E∞-algebra (chain complexes with an action of
an E∞-operad).

Remark 8.4. Some advantages of the highly structured ring/module spectra over the mere
up-to-homotopy versions: we can endow them with a model structure/∞-category structure,
so they have a homotopy theory of their own, and we can e.g. talk about homotopy (co)limits,
which is always useful. Another improvement: if A is an E∞-ring spectrum, then the category
of A∞-module spectra has a monoidal structure, which is not true if we’re only up to homotopy.
As a final example, high-brow example, we mention topological modular forms. The theorem
of Goerss–Hopkins–Miller [DFHH14, 5.0.1] which identifies TMF as the global sections of
a sheaf Otop of E∞-ring spectra on the moduli stack of elliptic curves in the étale topology,
would be impossible without highly-structured ring spectra. If you’re intrigued by this, we
recommend checking out [Law09b].4

Example 8.5. (1) The sphere spectrum S is an E∞-ring spectrum. The multiplicative struc-
ture induced in π∗S was explored in the exercises.

(2) The Eilenberg–Mac Lane spectrum of a (commutative) ring R gives an A∞ (E∞)-ring
spectrum, and if M is a module over R, then HM is a module spectrum over HR.

(3) The topological K-theory spectrum KU is an E∞-ring spectrum, with multiplication
coming from the tensor product of complex vector bundles.

(4) The space BF is an E∞-space. If X is also an E∞-space and f : X → BF is an E∞-map,
then its Thom spectrum M f is an E∞-spectrum. Thus, MU is E∞. In Example 7.33.(4),
we mentioned that HZ and HF2 are equivalent to Thom spectra of maps Ω2S3 → BF.
These maps are only E2, so the equivalence is merely of E2-ring spectra, even though
HZ and HF2 have full E∞-structures.

(5) The spectrum K(1) at p 6= 2 which appeared in Example 7.23 is E2, but not E∞. The
spectrum BP at the prime 2, mentioned in Example 7.33.(2), is an E4-spectrum, but it is
not E12 [Law18], answering after many years the open question of whether BP admits
an E∞-structure.

Remark 8.6. While definitely interesting and useful, A∞-spaces do not give anything really
new up to weak equivalence, since they are weak equivalent to topological monoids. This is a
classical result from the beginnings of the theory, [Sta63], [BV73].

Similarly, every A∞-algebra is quasi-equivalent to a dg-algebra. Keller calls it an “anti-
minimal model” [Kel01]. I find it hard to navigate the literature on this, especially because the
more algebraic sources prefer to work over a field. But I think an application of [PS18] gives
the result over any commutative ring, and also encompasses the result for A∞-spaces.

The analogous statement for E∞ is not true. For example, if X is a topological space and R
is a ring, then C∗(X; R), the chain complex of singular chains with coefficients in R, is a chain
E∞-algebra, but it’s not a cdga, nor quasi-isomorphic to one. There’s a fundamental obstruction
there, which accounts for the existence of the Steenrod operations. See Lurie: 18.917, Lecture 2,
MO: Why does one think to Steenrod squares and powers?, [MT68, Pages 15-16]

4To entice you, here’s the wonderful praise by Mike Hill on the MathSciNet review: “This paper provides a
broad, clear introduction to the recent advances coming from the introduction of algebraic geometry machinery
into homotopy theory. The author maintains an easy-going, conversational tone, peppering the discussion with
amusing anecdotes and references. Though the breadth of the discussion is vast, the author does a very good job
providing both just enough detail to explain the concepts and an extensive bibliography for the interested reader.
Additionally, this paper has sufficient depth and enough examples to serve as a very good reference for beginning
researchers in the field and for interested experts.”

https://math.mit.edu/~lurie/917notes/Lecture2.pdf
https://mathoverflow.net/questions/6377/why-does-one-think-to-steenrod-squares-and-powers
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The general question of when is a coherent up-to-homotopy structure weakly equivalent to
a strict structure is called the “rectification problem”. Note it is a “model-dependent” question.

At any rate, considering the singular chains C∗(X; R) together with its chain E∞-algebra
structure captures a lot of information of X. In fact, given hypotheses that in particular tame
the π1, it captures all the information of its homotopy type!

Theorem 8.7 (Mandell). The homotopy category of finite type, nilpotent5 spaces is equivalent to the
homotopy category of chain E∞-Z-algebras. In particular, if X, Y are two such spaces, then X is weakly
equivalent to Y if and only if C∗(X; Z) is quasi-isomorphic to C∗(Y; Z) as chain E∞-Z-algebras.

Remark 8.8. The above is a fantastic theoretical result, that says that homotopy types can
be modeled by a sufficiently sophisticated algebraic gadget, given some mild hypotheses. It
improves on previous results of Quillen and Sullivan over Q (where, actually, one can model
rational spaces by rational cdgas; see e.g. [Hes07], [Ber12] for surveys), and by Mandell himself
for p-spaces.

This operadic approach to highly-structured ring spectra was the original one, and it un-
derlies Luries approach to the subject, too [Lur17]. One can hide it all inside a black box if
one gets a good smash product of spectra. Let us fix one of them: for example, let SpEKMM

denote the symmetric monoidal model category of spectra from [EKMM97], which is such that
its homotopy category together with the induced smash product is monoidally equivalent to
(Ho(Sp),∧, S). Then the smash product there is engineered in such a way that monoids in
SpEKMM coincide with A∞-ring spectra, commutative monoids coincide with E∞-ring spectra,
and modules coincide with A∞-module spectra [EKMM97, II.4].6 See [Ric17] for a nice survey
on E∞-ring spectra.

Remark 8.9. Here’s a question you may ask: similarly as for spectra, can one build a symmetric
monoidal category such that (commutative) monoids therein model A∞- (E∞-) spaces? Yes, you
can. These are the ∗-modules introduced in Andrew Blumberg’s Ph.D thesis, see also [BCS10]
or [ABG+14b]. This mimicks a construction used in the foundations of EKMM spectra. See
Remark 8.14 for an analog of this question for chain complexes.

Let us now compare this algebra with spectra with dg-algebra.

Theorem 8.10. Let R be a ring. Consider the Eilenberg–Mac Lane spectrum HR as an A∞-ring
spectrum. The homotopy category of HR-module spectra is equivalent to the derived category of R.

PROOF. This is a theorem of Robinson [Rob87]. It was improved in [EKMM97, IV.2.4]
(see IV.2.2 there for a description of a functor associating a chain complex to a CW R-module)
and improved to a 2-step zig-zag of Quillen equivalences of model categories in [SS03, 5.1.6,
Appendix B]. It was also improved to an equivalence of ∞-categories by Lurie [Lur17, 7.1.1.16].

�

Remark 8.11. The theorem above is sometimes called the stable Dold-Kan correspondence, by
analogy with the Dold-Kan correspondence which states an equivalence between the categories

5A space is of finite type if its homology is finitely generated in each degree; it is nilpotent if its fundamental
group is nilpotent and acts nilpotently on the higher homotopy groups.

6The same is true for commutative monoids in symmetric and orthogonal spectra, provided one uses an
adequate model structure, called the positive one. With the original ones, their homotopy theory is something
else which has not been deemed interesting, I think. On the other hand, consider Γ-spaces: they model connective
spectra, and I hear that Connes–Consani deem the commutative monoids in there, which do not model all connective
E∞-ring spectra [Law09a], as interesting in non-commutative geometry. As a final remark, see [Lur17, 4.5.4.7] for
a theorem giving conditions on a monoidal model category such that commutative monoids in them model “the
right thing” ∞-categorically.
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of non-negative chain complexes and of simplicial abelian groups. There is an earlier precedent
by Kan which makes the analogy clearer, see nLab:Stable Dold-Kan correspondence.

By contrast, there is no ring R, and indeed no abelian categoryA such that Ho(Sp) ' D(A)
by fairly elementary reasons; see [Sch10].

Remark 8.12. Combining this with an extension of scalars, we get a functor Ho(Sp)→ D(Z).
Indeed, for any map R→ S of E∞-ring spectra, we have an extension of scalars functor S∧R− :
ModR → ModS, left adjoint to restriction of scalars. In particular, the Hurewicz map S→ HZ

induces a commutative diagram

SpEKMM ' ModS ModHZ

Ho(Sp) Ho(ModHZ) ' D(Z).

γγ

HZ∧−

HZ∧−

We thus have an “extension of scalars” functor Ho(Sp) → D(Z) along the Hurewicz map
S→ HZ: the sphere spectrum S is the initial object among A∞− and E∞-ring spectra. This is
closely related to the universal property mentioned in Side remark 6.12.

Theorem 8.10 takes care of the additive structure. What if we add a multiplication?

Theorem 8.13. Let R be a commutative ring. The homotopy category of A∞-HR-algebra spectra
is equivalent to the homotopy category of differential graded R-algebras, which is equivalent to the
homotopy category of chain A∞-R-algebras.

The homotopy category of E∞-HR-algebra spectra is equivalent to the homotopy category of chain
E∞-R-algebras. These are equivalent to the homotopy category of R-cdgas if and only if R contains the
rational numbers.

PROOF. The second statement of the first paragraph was mentioned in Remark 8.6. The
first one is a theorem of Shipley [Shi07]. As for the second paragraph, this is a theorem of
Shipley–Richter [RS17]. �

Under the second equivalence above, the chain E∞-R-algebra from Theorem 8.7 corre-
sponds to the E∞-HR-algebra spectrum given by F(X+, HR).

Remark 8.14. Echoing Remark 8.9, we can now answer the following question. Does there
exist a symmetric monoidal category whose commutative monoids are a good model for chain
E∞-R-algebras? Yes: that of HR-algebra spectra.7 One can wonder if there exists a more “chain-
complex flavored” strict model.

This is the entry-door to brave new algebra. A full development of the basics (and not
only) in modern terms, adapting many old classical theorems to the homotopical setting, and
proving many new things along the way, is in [Lur17].

To mention only two examples dear to the author of homotopical adaptations of classical
theories, Hochschild homology (HH) of associative algebras has a counterpart for A∞-ring
spectra, called topological Hochschild homology (THH), and the theory of the cotangent complex
/ André–Quillen cohomology of commutative algebras also has one for E∞-ring spectra (TAQ).
Taking a classical ring R (like Z) and identifying it with its Eilenberg–Mac Lane spectrum HR,
we have a deeper base to work over, the sphere spectrum, and we can think of THH as being
HH over S instead of over Z, and similarly for TAQ. This is a very rich improvement which
sheds light on classical algebra via this detour through the world of spectra, much like what

7More precisely: the commutative monoids in the symmetric monoidal category of HR-module symmetric
spectra have a model structure which is Quillen equivalent to the model category of chain E∞-R-algebras.

https://ncatlab.org/nlab/show/stable+Dold-Kan+correspondence
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happens with derived algebra. And of course, there are brave new objects which do not come
from classical algebra which are extremely interesting in themselves.



Bibliography

[ABG+14a] Matthew Ando, Andrew J. Blumberg, David Gepner, Michael J. Hopkins, and Charles Rezk. An ∞-
categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology. J. Topol.,
7(3):869–893, 2014.

[ABG+14b] Matthew Ando, Andrew J. Blumberg, David Gepner, Michael J. Hopkins, and Charles Rezk. Units of
ring spectra, orientations and Thom spectra via rigid infinite loop space theory. J. Topol., 7(4):1077–1117,
2014.

[AC16] Omar Antolı́n Camarena. A whirlwind tour of the world of (∞, 1)-categories. In Mexican mathematicians
abroad: recent contributions, volume 657 of Contemp. Math., pages 15–61. Amer. Math. Soc., Providence,
RI, 2016.

[ACB19] Omar Antolı́n-Camarena and Tobias Barthel. A simple universal property of Thom ring spectra. J.
Topol., 12(1):56–78, 2019.

[Ada69] J. F. Adams. Lectures on generalised cohomology. In Category Theory, Homology Theory and their Appli-
cations, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), pages 1–138. Springer, Berlin,
1969.

[Ada74] J. F. Adams. Stable homotopy and generalised homology. Chicago Lectures in Mathematics. University of
Chicago Press, Chicago, Ill.-London, 1974.

[Ada78] John Frank Adams. Infinite loop spaces. Annals of Mathematics Studies, No. 90. Princeton University
Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978.

[AGP02] Marcelo Aguilar, Samuel Gitler, and Carlos Prieto. Algebraic topology from a homotopical viewpoint. Uni-
versitext. Springer-Verlag, New York, 2002. Translated from the Spanish by Stephen Bruce Sontz.

[Ark11] Martin Arkowitz. Introduction to homotopy theory. Universitext. Springer, New York, 2011.
[BB20] Tobias Barthel and Agnès Beaudry. Chromatic structures in stable homotopy theory. In Handbook of

homotopy theory, CRC Press/Chapman Hall Handb. Math. Ser., pages 163–220. CRC Press, Boca Raton,
FL, [2020] c©2020.

[BCF68] R. O. Burdick, P. E. Conner, and E. E. Floyd. Chain theories and their derived homology. Proc. Amer.
Math. Soc., 19:1115–1118, 1968.

[BCS10] Andrew J. Blumberg, Ralph L. Cohen, and Christian Schlichtkrull. Topological Hochschild homology
of Thom spectra and the free loop space. Geom. Topol., 14(2):1165–1242, 2010.

[Ber12] Alexander Berglund. Rational homotopy theory, 2012. https://staff.math.su.se/alexb/rathom2.
pdf.

[BF78] A. K. Bousfield and E. M. Friedlander. Homotopy theory of Γ-spaces, spectra, and bisimplicial sets. In
Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, volume 658 of Lecture Notes
in Math., pages 80–130. Springer, Berlin, 1978.

[BG99] James C. Becker and Daniel Henry Gottlieb. A history of duality in algebraic topology. In History of
topology, pages 725–745. North-Holland, Amsterdam, 1999.

[BK12] C. Barwick and D. M. Kan. Relative categories: another model for the homotopy theory of homotopy
theories. Indag. Math. (N.S.), 23(1-2):42–68, 2012.

[BK13] Clark Barwick and Daniel Kan. From partial model categories to ∞-categories, 2013. https://www.
maths.ed.ac.uk/~cbarwick/papers/partmodcats.pdf.

[BMMS86] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger. H∞ ring spectra and their applications, volume
1176 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.

[Bou79] A. K. Bousfield. The localization of spectra with respect to homology. Topology, 18(4):257–281, 1979.
[BV73] J. M. Boardman and R. M. Vogt. Homotopy invariant algebraic structures on topological spaces. Lecture

Notes in Mathematics, Vol. 347. Springer-Verlag, Berlin-New York, 1973.
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