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In this note, Top will denote the category of weakly Hausdorff compactly generated spaces and its
objects will be called spaces.

We will work with the theory of [1]: we work with commutative S-algebras R, R-algebras A and
A-modules.

1 Dold-Kan correspondence

We briefly recall some results on the Dold-Kan correspondence. Let A be an abelian category.
We denote by sA the category of simplicial objects inA and by Ch≥0(A) the category of chain complexes

in A which are zero in negative degrees. We define two functors C,N : sA → Ch≥0(A).
If C• is a simplicial object in A with face maps di, define the Moore complex of C• as

CC• =

(
Cn,

n∑
i=0

(−1)idi

)
n

. (1)

We define the normalized complex of C• which we denote by NC• by

NCn =
n−1⋂
i=0

ker(di : Cn → Cn−1)

with differential (−1)ndn. It is a subcomplex of C•.

Theorem 1.1 (Dold-Kan). [7, (8.4.1)] The functor N : sA → Ch≥0(A) is an equivalence of categories.

The homotopy groups of C• ∈ sA are defined as

π∗(C•) = H∗(N(C•)).
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Proposition 1.2. [3, (2.2.4)] If C• ∈ sA, the inclusion i : NC• → CC• is a natural chain homotopy equivalence.
Thus we get a natural isomorphism π∗(C•) ∼= H∗(CC•).

Let k be a commutative ring. If C• is a simplicial k-module, we denote by |C•| the geometric realization
of the underlying simplicial set.

Proposition 1.3. Let C• be a simplicial k-module. Then we have a natural isomorphism

π∗(|C•|) ∼= π∗(C•).

This follows from the description of πn(C•) as [∆n/∂∆n, C•] and the fact that the geometric realiza-
tion functor from the category of simplicial sets to the category of spaces is a Quillen equivalence. Indeed,
|∆n/∂∆n| = Sn. See [2, example 2.15].

Combining the previous two propostions we get a natural isomorphism in C• ∈ sA:

π∗(|C•|) ∼= H∗(CC•).

2 The bar construction

In this section we consider the classical algebraic bar constructions, all of which fall under the umbrella of
the two-sided bar construction. These are important because they yield canonical resolutions, or as Cartan-
Eilenberg called them, standard complexes.

Let k be a commutative ring and A be a (unital, associative) k-algebra; we denote ⊗ = ⊗k. Let M be a
right A-module and N be a left A-module. We define a simplicial k-module B•(M,A,N) called the two-sided
bar construction associated to A, M and N , as follows:

Bn(M,A,N) = M ⊗A⊗n ⊗N,

with face maps
di : Bn(M,A,N)→ Bn−1(M,A,N)

and degeneracy maps
si : Bn(M,A,N)→ Bn+1(M,A,N)

given by
di(a0 ⊗ · · · ⊗ an+1) = a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1 and (2)

si(a0 ⊗ · · · ⊗ an+1) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an+1

for i = 0, . . . , n, where a0 ∈ M , a1, . . . , an ∈ A, an+1 ∈ N . The simplicial identities are readily checked.
We denote its associated Moore complex CB•(M,A,N) by B∗(M,A,N).

LetAe := A⊗Aop be the enveloping algebra ofA. Then the category of (A,A)-bimodules is equivalent to
both the category of left Ae-modules and the category of right Ae-modules. Explicitely, an (A,A)-bimodule
M begets a left Ae-module M by the formula (a⊗ a′)m = ama′, and a right Ae-module M by the formula
m(a⊗ a′) = a′ma. This holds in particular for M = A.

Proposition 2.1. 1. The chain complex B∗(A,A,A) yields a resolution of A as a left Ae-module with aug-
mentation given by the multiplcation.

If A is flat as a k-module, then this is a flat resolution.
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2. If N is a left A-module, then B∗(A,A,N) yields a resolution of N as a left A-module, with augmentation
given by the action of A on N .

If A and N are k-flat, then this is a flat resolution.

3. If M is a flat right A-module, then B∗(M,A,N) yields a resolution of M ⊗A N as a k-module, with
augmentation given by the obvious map M ⊗N →M ⊗A N .

If moreover A and N are k-flat, then this is a flat resolution.

Proof. 1. Explicitely, B∗(A,A,A) is the following chain complex of k-modules:

B∗(A,A,A) : . . .
d // A⊗n+2 d // A⊗n+1 d // . . .

d // A⊗2 // 0. (3)

Here A⊗n+2 is in degree n, and d : A⊗n+2 → A⊗n+1 is given by d =
n∑
i=0

(−1)idi.

This is actually a complex of (A,A)-bimodules. Moreover, if A is k-flat then A⊗n+2 is so too as an
Ae-module, for all n ≥ 0. Indeed, A⊗n+2 = A⊗A⊗n⊗A ∼= A⊗Aop⊗A⊗n is the extension of scalars
of the flat k-module A⊗n to Ae, so it is still flat.

Let us augment the complex (3) by µ : A⊗2 → A, the multiplication of A:

. . .
d // A⊗n+2 d // A⊗n+1 d // . . .

d // A⊗2 µ
// A // 0. (4)

This is still a complex of (A,A)-bimodules. To prove it is exact, we build a contracting homotopy. Let
s : A⊗n+1 → A⊗n+2 be an “extra degeneracy”:

s(a0 ⊗ · · · ⊗ an) = 1⊗ a0 ⊗ · · · ⊗ an.

It is quickly verified that dis = sdi−1 for all i > 1 and d0s = id. So ds+sd = id and also ds+sµ = id,
so s is a contracting homotopy of the complex (4).

2. Apply the functor −⊗A N to the exact complex (4). It is now a complex of left A-modules, and it is
easily identified with B∗(A,A,N) augmented by the action of A on N . The contracting homotopy
we defined carries over, mutatis mutandis.

If A is k-flat then the bar resolution B(A,A,A) is flat; upon tensoring it with the flat k-module N it
remains flat as an A-module.

3. If M is a right flat A-module, the functor M ⊗A − is exact and lands in k-modules. Apply it to what
we obtained in 2), and again it is easy to recognize it yields what we want. Observe that we cannot
define the contracting homotopy when having M as a first factor, hence the hypothesis of flatness is
necessary for obtaining exactness.

Remark 2.2. Let us record two isomorphisms found on the way: we have an isomorphism of left A-module
complexes

B∗(A,A,N) ∼= B∗(A,A,A)⊗A N

and an isomorphism of k-module complexes

B∗(M,A,N) ∼= M ⊗A B(A,A,N) = (M ⊗N)⊗Ae B∗(A,A,A).

3 Hochschild homology

Let k be a commutative ring and A be a (unital, associative) k-algebra; we denote ⊗ = ⊗k. Let M be an
(A,A)-bimodule.
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3.1 As (the homotopy groups of) a simplicial module

We define a simplicial k-module H•(A,M) as follows:

Hn(A,M) = M ⊗A⊗n,

with face maps di : Hn(A,M)→ Hn−1(A,M) and degeneracy maps si : Hn(A,M)→ Hn+1(A,M) given
by

di(a0 ⊗ · · · ⊗ an) =

{
a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an if i = 0, . . . , n− 1

ana0 ⊗ a1 ⊗ · · · ⊗ an−1 if i = n,

si(a0 ⊗ · · · ⊗ an) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an if i = 0, . . . , n,

where a0 ∈M and a1, . . . , an ∈ A. The simplicial identities are readily checked.
We define the Hochschild homology of A with coefficients in M :

H∗(A,M) := π∗(H•(A,M)).

When we take M = A we denote HH∗(A) := H∗(A,A) and we call it the Hochschild homology of A.

3.1.1 As (the homotopy groups of) a space

By proposition 1.3, we get that

H∗(A,M) = π∗(|H•(A,M)|).

3.1.2 As (the homology groups of) a chain complex

We can consider the associated Moore complex CH•(A,M) to the simplicial module H(A,M) as in (1). We
call it the Hochschild complex of A with coefficients in M .

By proposition 1.2, we get that

H∗(A,M) = H∗(CH•(A,M)).

3.2 As a derived tensor product

We can give yet another expression for H∗(A,M), if we accept an additional flatness hypothesis.

Proposition 3.1. Suppose A is flat as a k-module. Then

H∗(A,M) = TorA
e

∗ (M,A). (5)

Proof. Consider B(A,A,A), the bar resolution of A as in proposition 2.1. It is a flat resolution of A as an
Ae-module. Let us apply M ⊗Ae − to (3): we obtain a complex of Ae-modules,

. . .
b′ //M ⊗Ae A⊗n+2 b′ //M ⊗Ae A⊗n+1 b′ // . . .

b′ //M ⊗Ae A⊗2 µ
//M ⊗Ae A // 0. (6)

Since Tor can be computed with flat resolutions, the homology of this complex computes the Tor in (5). I
claim that this complex is isomorphic to the Hochschild complex of A with coefficients in M , and so we
obtain the result.

Indeed, first observe that there is an isomorphism of Ae-modules M ⊗Ae A⊗n+2 ∼= M ⊗A⊗n:

M ⊗Ae ⊗A⊗n+2 = M ⊗Ae A⊗A⊗n ⊗A ∼= M ⊗Ae ⊗Ae ⊗A⊗n ∼= M ⊗A⊗n.
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An inspection of the differentials shows that the following ladder diagram commutes, and hence that we have
the desired isomorphism of complexes of Ae-modules.

M ⊗Ae B∗(A,A,A) :

∼=
��

· · · //M ⊗Ae A⊗n+2

∼=
��

//M ⊗Ae A⊗n+1

∼=
��

// · · · //M ⊗Ae A⊗2 //

∼=
��

0

CH∗(A,M) : · · · //M ⊗A⊗n //M ⊗A⊗n−1 // · · · //M // 0.

Remark 3.2. 1. From the end of the previous proof we deduce that we can recover the bar complex
B(A,A,A) as a Hochschild complex: B∗(A,A,A) ∼= CH•(A,Ae).

2. The Hochschild chain complex CH•(A,A) ∼= M ⊗Ae B∗(A,A,A) is called the cyclic bar construction
associated to A. This is reasonable since it is an example of a cyclic k-module (see [4]).

With enough flatness over k the bar resolution gives us a canonical way to compute Tor, and in fact
identifies it with Hochschild homology modules with coefficients in the tensor product:

Corollary 3.3. Let M be a right A-module and N be a left A-module. Suppose A and N are flat as k-modules.
Then we have an isomorphism of k-modules

H∗(A,M ⊗N) = TorA∗ (M,N).

Proof. Consider the bar resolution B∗(A,A,A). It gives a flat resolution of A as an Ae-module. If we apply
(M ⊗N)⊗Ae− to it, the homology of the resulting complex computes TorA

e

∗ (M ⊗N,A) ∼= H∗(A,M ⊗N)

by proposition 3.1.
On the other hand, (M ⊗N)⊗Ae − ∼= (M ⊗A−) ◦ (−⊗AN). If we first apply −⊗AN to B∗(A,A,A),

we get B∗(A,A,N) (remark 5.4). In view of proposition 2.1.2, this yields a flat resolution of N as a left
A-module. So if we now apply M ⊗A − to it and compute its homology, we get TorA∗ (M,N). This finishes
the proof.

4 The geometric realization of simplicial spectra

4.1 Coends

We recall the definition of a special kind of colimit. Let I be a small category and C be a cocomplete category.
Let F : Iop × I → C be a functor. Then the coend of F is the following coequalizer:

∫ n∈I
F (n, n) := colim

 ∐
f :i→j

F (j, i) //
//

∐
k

F (k, k)


where the two arrows are the following. If f : i → j is an arrow in I , we have two arrows given as the

following compositions: F (j, i)
F (fop,idi)

// F (i, i) �
�

//
∐
k F (k, k) and

F (j, i)
F (idj ,f)

// F (j, j) �
�

//
∐
k F (k, k) . This defines two maps as wanted.

4.2 A commentary on the general framework

A general framework in which one can define the geometric realization of a simplicial object is for categories
C which are enriched over sSet, tensored1 and cocomplete. In this setting, if X• ∈ sC, one defines ( [6,

1Also called copowered. A category C enriched over a monoidal category V is tensored if for every V ∈ V and C ∈ C there exists
an object V ⊗ C ∈ C such that there is an isomorphism in V , C(V ⊗ C,C′) ∼= V(V, C(C,C′)).
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(3.8.1)])

|X•| =
∫ [n]∈∆

∆n ⊗Xn ∈ C

where ∆n ∈ sSet is the standard n-simplex, so that geometric realization is a functor |−| : sC → C.

Somewhat dually, one might define it for categories enriched over Top, as

|X•| =
∫ [n]∈∆

∆n ⊗Xn ∈ C (7)

where ∆n ∈ Top is the standard topological n-simplex.

Some classical categories C that satisfy either of the hypotheses above are simplicial sets and spaces. The
enrichment for the category of spaces over sSet and of the category of simplicial sets over Top come from
the adjunction of classical geometric realization and singular simplicial set. See [6, (6.2.2)]. As is expected, in
these cases any two of the definitions above yield the same object.

For the above paragraph not to be circular, we are assuming that classical geometric realization has already
been defined. This is not troubling, because classical geometric realization sSet→ Top is not encompassed
by the definitions above (the codomain should be Set). In any case, classical geometric realization is defined
in a very similar way to (7), but taking an additional step: we take Xn to be a discrete topological space and
we compute the product and the colimit in Top.
Remark 4.1. Let C be a category as above. Let C ∈ C and consider the constant simplicial object C•, defined
as Cn = C for all n and all maps between simplices are defined to be identities. Then |C•| = C. This follows
from general categorical arguments.

4.3 For simplicial spectra

Let R be a commutative S-algebra and K• be a simplicial R-module. We define (or we get from the previous
section) its geometric realization |K•|, which is an R-module:

|K•| =
∫ [n]∈∆

Kn ∧ (∆n)+.

Here (∆n)+ is the standard topological n-simplex with a point attached. Geometric realization defines a
functor from the category of simplicial R-modules to the category of R-modules.

Proposition 4.2. [1, (X.1.2)] The geometric realization functor preserves homotopies.

In the previous proposition, “homotopies” in the category of simplicial R-modules can be understood in
two ways. It can mean simplicial maps with domains of the form K• ∧ I+, or it can mean the combinatorial
kind of simplicial homotopy that makes sense for any category [5, (9.1)]. Both are preserved.

Proposition 4.3. [1, (X.1.3)] For simplicial R-modules K•, L• and simplicial based spaces X•, there are natural
isomorphisms:

1. |K• ∧ L•| ∼= |K•| ∧ |L•|,

2. |K• ∧X•| ∼= |K•| ∧ |X•|,

3. Σ∞|X•| ∼= |Σ∞X•|.

There is a technical condition one can impose on a simplicial R-module: we can ask for it to be proper,
see definitions [1, (X.2.1), (X.2.2)].

Proposition 4.4. Let f• : K• → L• be a map of proper simplicial R-modules. If fn : Kn → Ln is a homotopy
equivalence (resp. weak equivalence) for all n, then |f•| : |K•| → |L•| is a homotopy equivalence (resp. weak
equivalence).
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5 The bar construction for monads

5.1 Monads

Definition 5.1. A monad on a category C is a triple (T, η, µ) where T : C → C is a functor and η : idC → T ,
µ : T 2 → T are natural transformations such that the following diagrams commute.

T 2

µ
##

T
Tη

oo
ηT

//

idT

��

T 2

µ
{{

T

T 3 Tµ
//

µT

��

T 2

µ

��

T 2
µ
// T

The natural transformations η and µ are called the unit and the multiplication of the monad.

If C is small (or if we sweep size issues under the carpet), we can reformulate the definition as: a monad
is a monoid object in the category of endofunctors CC .

The basic machine for producing examples is the following. Let C
F
%%

D
G

dd be functors and η : idC →

GF , ε : FG→ idD be natural transformations such that (F,G, η, ε) is an adjunction (i.e. F is left adjoint to
G with unit η and counit ε). Then (GF, η,GεF ) is a monad on C.

Definition 5.2. If (T, η, µ) is a monad on a category C, a T -algebra is a pair (C,α) where C ∈ C and
α : TC → C is an arrow in C, called the structure map, such that the following diagrams commute.

C
ηC //

idC !!

TC

α

��

C

T 2C
µC //

Tα
��

TC

α

��

TC α
// C

If (C,α) and (C ′, α′) are two T -algebras, then a map (C,α) → (C ′, α′) is given by a map f : C → C ′ in C
such that the following diagram commutes.

TC
α //

Tf
��

C

f
��

TC ′
α′
// C ′

Thus we get a category of T -algebras.

Definition 5.3. [1, (II.6.3)] Let (T, η, µ) be a monad in a category C. A right T -functor in a category C′ is
a pair (F, ν) where F : C → C′ is a functor and ν : FT → F is a natural transformation called right action
such that the following diagrams commute.

FT

ν
!!

F
Fη
oo

idF

��

F

FT 2 Fµ
//

νT
��

FT

ν

��

FT ν
// F

Let (T ′, η′, µ′) be a monad in a category C′. A left T ′-functor in a category C is a pair (F, λ) where
F : C → C′ is a functor and λ : T ′F → F is a natural transformation called left action such that the following
diagrams commute.

F
η′F
//

idF

��

T ′F

λ
}}

F

T
′2F

µ′F
//

T ′λ
��

T ′F

λ

��

T ′F
λ
// F
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A (T’,T)-functor is a triple (F, λ, ν) where (F, λ) is a left T ′-functor, (F, ν) is a right T -functor and such
that the following diagram commutes.

T ′FT
λT //

T ′ν
��

FT

ν

��

T ′F
λ
// F

Remark 5.4. Let (T ′, η′, µ′) be a monad in a category C′. If (F : C → C′, λ) is a left T ′-functor and C ∈ C,
then (FC, λC) is a T ′-algebra.

Example 5.5. Let C be a category with a monad (T, η, µ). Then T : C → C is a (T, T )-functor, taking ν and
λ to be µ.

5.2 The bar construction

Definition 5.6. [1, (XII.1.1)] Let (T, η, µ) be a monad in a category C, (C,α) be a T -algebra and (F, ν) be a
right T -functor on a category C′. We define a simplicial object B•(F, T,C) in C′ as follows: Bn(F, T,C) =

FTnC with faces and degeneracies given by

di =


(νTn−1)C if i = 0

(FT i−1µTn−i−1)C if 0 < i < n

FTn−1α if i = n

and si = (FT iηTn−i)C .

Remark 5.7. If C′ has a monad (T ′, η′, µ′) and F is a (T ′, T )-functor then B•(F, T,C) is a simplicial T ′-
algebra, i.e. it is a simplicial object in the category of T ′-algebras, where Bn(F, T,C) = FTnC is a T ′-algebra
with the structure map α given by λTnC : T ′FTnC → FTnC, where λ : T ′F → F is the left action of F
(cf. remark 5.4).

Example 5.8. Following example 5.5, if T is a monad in a category C and C is a T -algebra, we can form the
bar construction B•(T, T, C) and it is a simplicial T -algebra by the previous remark.

The following proposition exhibits B•(T, T, C) as a “simplicial resolution” of C.

Proposition 5.9. Let (T, η, µ) be a monad in a category C and (C,α) be a T -algebra. There is a natural simplicial
homotopy equivalence

B•(T, T, C)→ C•

in the category sC, where C• is the constant simplicial T -algebra associated to C, i.e. Cn = C for all n and all
faces and degeneracies are taken to be identities.

Sketch of proof: Define ε• : B•(T, T, C) → C• and ϕ• : C• → B•(T, T, C) with εn : Tn+1C → C and
ϕn : C → Tn+1C given by

εn =


α if n = 0,

µC ◦ α if n = 1,

µTn−1C ◦ · · · ◦ µTC ◦ µC ◦ α if n ≥ 2.

ϕn =

{
ηC if n = 0,

ηC ◦ ηTC ◦ · · · ◦ ηTnC if n ≥ 1.

Then ε• ◦ ϕ• = id, and there is a simplicial homotopy ϕ• ◦ ε• ' id ( [5, (9.8)]).
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Functoriality Let (T, η, µ) be a monad in a category C, let (C,α) be a T -algebra and let (F, ν), (F ′, ν ′) be
two right T -functors. A morphism (F, ν)→ (F ′, ν ′) is given by a natural transformation π : F → F ′ such
that the following diagram commutes.

FT
ν //

πT
��

F

π

��

F ′T
ν′
// F ′

Such a morphism induces a simplicial map between bar constructions:

B•(F, T,C)→ B•(F
′, T, C)

defined as πTnC : FTnC → F ′TnC.
This gives functoriality of the bar construction in the first variable. It is actually functorial in all three of

them but we don’t need it for our purposes.

5.3 The case of modules over a ring

The monad Let k be a commutative ring, A be a k-algebra. Extension and restriction of scalars with respect
to the unit map k → A form an adjoint pair of functors.

k-Mod

A⊗−
''

A-Mod

U

ff

The associated monad (T, η, µ) is such that, for M ∈ k-Mod:

T : k-Mod→ k-Mod, M 7→ A⊗M
ηM : M → A⊗M, m 7→ 1⊗m

µM : A⊗ (A⊗M)→ A⊗M, a′ ⊗ (a⊗m) 7→ a′a⊗m.

The algebra An algebra over this monad is a left A-module N with structure map A⊗N → N given by
the action of A on N .

The functor Let M be a right A-module. Let F be the functor M ⊗ − : k-Mod → k-Mod, and let
ν : FT → T be the natural transformation given by νP : M ⊗ A ⊗ P → M ⊗ P , m ⊗ a ⊗ p 7→ ma ⊗ p.
Thus (F, ν) is a right T -functor.

If M is an (A,A)-bimodule, then this functor is a (T, T )-functor, where the left action λP : TFP =

A⊗M ⊗ P →M ⊗ P = FP is given by a⊗m⊗ p 7→ am⊗ p.

And the bar construction. It is now clear that the classical two-sided bar construction of section 2 is a
special case of the monadic one, only by expressing the faces and degeneracies (2) of the classical simplicial
k-module B•(M,A,N) in an element-free way. Let µ : A⊗ A→ A be the product of A and η : k → A be
its unit map. Let ν : M ⊗A→ A and α : A⊗N → N be the actions of A on M and N . Then we have

di =


ν ⊗ id⊗n−1

A ⊗ idN if i = 0,

idM ⊗ id⊗i−1
A ⊗µ⊗ id⊗n−i−1

A ⊗ idN if 0 < i < n,

idM ⊗ id⊗n−1
A ⊗α if i = n

and si = idM ⊗ id⊗iA ⊗η ⊗ id⊗n−iA ⊗ idN .
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Proposition 5.9 applied to this context gives a natural simplicial homotopy equivalence

B•(A,A,N)→ N•

where N• is the constant simplicial R-module at N . Compare with the result obtained in proposition (2.1.2).

5.4 The case of modules over an S-algebra

The case of modules over a commutative S-algebra R is formally analogous to the case of modules over a
commutative ring k. In section 5.3, just replace k by R and ⊗k by ∧R. So here A is an R-algebra, M is a
right A-module and N is a left A-module.

The bar construction BR
• (M,A,N) yields a simplicial R-module. We can thus apply geometric realiza-

tion to it, and we write
BR(M,A,N) := |BR

• (M,A,N)|.

Proposition 5.10. There is a natural homotopy equivalence of R-modules

BR(A,A,N)→ N.

Proof. Proposition 5.9 gives a simplicial homotopy equivalence BR
• (A,A,N) → N•, and since geometric

realization preserves homotopies (proposition 4.2) we get the result in view of remark 4.1.

Remark 5.11. If M is a cell A-module, then there is a weak equivalence of R-modules BR(M,A,N) →
M ∧A N . ( [1, IX.2.3]) Compare with proposition 2.1.3.

Proposition 5.12. Let f : M →M ′ be a morphism between right R-modules. Suppose it is a homotopy equiva-
lence (resp. weak equivalence). Then the induced map on geometric realizations BR(M,A,N)→ BR(M ′, A,N)

is a homotopy equivalence (resp. weak equivalence).

Proof. It is an application of proposition 4.4, since the hypothesis implies that M ∧An ∧N →M ′ ∧An ∧N
is a homotopy equivalence (resp. weak equivalence) for all n.

6 Topological Hochschild homology

We will now translate the definition(s) of Hochschild homology to the topological context.
Let R be a commutative ring spectrum, A be an R-algebra and M be an (A,A)-bimodule.
We denote ∧ = ∧R, the smash product in the category of R-modules.

6.1 As a simplicial spectrum

In section 3.1.1 we expressed Hochschild homology as (homotopy groups of) a simplicial k-moduleH•(A,M).
We will now mimic that definition.

Let φ : A ∧ A → A be the product of A and η : R → A be its unit. Let ξ` : A ∧ M → M and
ξr : M ∧A→M be the left and right actions of A on M respectively.

Denote by τ : (M ∧ A∧n−1) ∧ A → A ∧ (M ∧ A∧n−1) the canonical isomorphism. We define the
simplicial R-module thhR• (A,M) as thhRn (A,M) = M ∧A∧n with face maps di : M ∧A∧n →M ∧A∧n−1

and degeneracies si : M ∧A∧n →M ∧A∧n+1 given by

di =


ξr ∧ id∧n−1

A if i = 0,

idM ∧ id∧i−1
A ∧µ ∧ id∧n−i−1

A if 0 < i < n,

(ξl ∧ id∧n−1
A ) ◦ τ if i = n

and si = idM ∧ id∧iA ∧η ∧ id∧n−iA . We now define an R-module:

thhR(A,M) := |thhR• (A,M)|.
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Proposition 6.1. There is a natural map of R-modules M → thhR(A,M).

Proof. Consider the maps

M ∼= M ∧Rn id∧ηn
//M ∧An .

These maps define a natural map of simplicial R-modules M• → thhR• (A,M) where M• is the constant
simplicial R-module at M .

By applying geometric realization and remark 4.1, the statement follows.

6.2 As a derived smash product

In section 3.2 we expressed Hochschild homology as TorA
e

∗ (M,A) when A was flat as a k-module. On the
topological context, the analogous condition we need to impose on the commutative R-module A for the
analogous expression to hold is that A be cofibrant in the model category of commutative R-modules. We
will also need to suppose that R is cofibrant as an S-module. We make these assumptions in this section.

Define Ae to be A ∧Aop. We define an R-module

THHR(A,M) := M
L
∧Ae A

where the L on top of ∧ denotes that we are working in the derived category of R-modules.
We also define

THHR
∗ (A,M) := π∗(THH

R(A,M)).

For the above definitions to work how we want them to, we have to take M to be a cell Ae-module. This
is the analogous condition of having to take a projective resolution of the A-module M to compute Tor in
the algebraic case.

6.3 Relationship of thh with THH

The following proposition is proven in a formally analogous way to the corresponding statement for
Hochschild homology (5), i.e. by first establishing a natural isomorphism thhR(A,M) ∼= M∧AeBR(A,A,A)

where the last term is the bar construction of section 5.4.

Proposition 6.2. If M is a cell Ae-module, there is a natural weak equivalence of R-modules

thhR(A,M)→ THHR(A,M).

6.4 Relationship with Hochschild homology

Proposition 6.3. Let k be a commutative ring, A be a k-flat k-algebra, and M be an (A,A)-bimodule. We have

H∗(A,M) ∼= THHHk
∗ (HA,HM)

where H denotes Eilenberg-Mac Lane spectra.
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