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Abstract

In this dissertation we give a description through generators and relations of the K-groups of an
exact category N that supports long exact sequences. To this end, we define for every n ≥ 1 a
category ΩnN for which there are natural isomorphisms KnN ∼= K0ΩnN , and we obtain a group
presentation for the latter group. Throughout we use the theory of Waldhausen categories and
their K-theory as introduced in [14]: we briefly review the concepts and theorems we will be using
in the first chapter.

We claim no original content: all the main results are taken from [4].
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Introduction

Higher algebraic K-theory may be said to have started with Quillen in his 1973 article [8]. He
defined the notion of an exact category and a categorical construction, called theQ-construction, that
assigns to an exact category N a category QN in a functorial way. One may take the classifying
space BQN of this category: the loop space of BQN is the K-space ofN , noted KN and proven
to be an infinite loop space, giving rise to an Ω-spectrum. Its homotopy groups give the higher
K-groups. Quillen proved his definition to coincide with the classical lower K-groups of a ring
R, when applying it to the category Proj(R) of finitely generated projective modules over R. His
development of this theory convinced the mathematical community that his generalization was a
fruitful one.

Quillen was the first to define the K-groups as the homotopy groups of a certain space. In the
following years new approaches and generalizations appeared. For example, Gillet and Grayson
[3] attached a simplicial set GN to the exact category N , whose i-th homotopy group yielded the
Ki-group of Quillen, without having to loop. Waldhausen [14] extended the scope of K-theory to
categories with cofibrations and weak equivalences, more general than exact categories and nowadays
called Waldhausen categories, through a construction called the S-construction. He proved both
coincided in the exact case.

The K0 group of an exact category admits an explicit presentation which is a direct general-
ization of the classical definition for rings. In 1996, Nenashev [7] found a presentation for the K1

group of an exact category, through double short exact sequences, using the methods of Gillet and
Grayson.

In 2012, Grayson [4], inspired by this result of Nenashev and using the machinery of Wald-
hausen, found a presentation for the higherK-groups of an exact category, through a generalization
of double short exact sequences, called acyclic binary multicomplexes. This is the first time a com-
pletely algebraic description of the higher K-theory groups of Quillen has been found. Morally,
the strategy is to attach, to the exact category N , an exact category ΩnN , such that KN is an
n-delooping of KΩnN . This is the content of theorem 3.3.3. A presentation for KnN is then
found through a presentation of the π0-group of KΩnN .

We will assume the reader has some familiarity with abelian categories and with homotopy
theory. We do not assume any knowledge of exact categories, Waldhausen categories or algebraic
K-theory.



Chapter 1

Setting the stage

1.1 Exact categories

In this section we will fix some terminology on exact categories. We take our main definition from
[1, (2.1)].

Definition 1.1.1. Let N be an additive category. A kernel-cokernel pair (i, p) is a sequence

N ′
i // N

p
// N ′′ in N such that i = ker p and p = coker i.

Let us fix a class E of kernel-cokernel pairs in N . We say that a morphism i (resp. p) is an
admissible monomorphism (resp. admissible epimorphism) if there exists a morphism p (resp. i) such
that (i, p) ∈ E .

An exact structure in N is a class E of kernel-cokernel pairs that satisfies the following condi-
tions:

• E is closed under isomorphism,

• for every N ∈ N the identity morphism idN is an admissible monomorphism and an
admissible epimorphism,

• the class of admissible monomorphisms and the class of admissible epimorphisms are closed
under composition,

• The pushout (resp. pullback) of an admissible monomorphism (resp. epimorphism) along
an arbitrary morphism exists and is an admissible monomorphism (resp. epimorphism).

An exact category is a pair (N , E) where N is an additive category and E is an exact structure on
N . The elements (i, p) of E are called short exact sequences inN and are denoted as

0 // N ′
i // N

p
// N ′′ // 0 (1.1)

We will usually say thatN (instead of (N , E)) is an exact category if there is no danger of confusion.

Convention 1.1.2. In order to avoid size issues, we will make the convention that exact categories
be skeletally small.
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1.2 Waldhausen categories

A functor N → N ′ between exact categories is called exact if it is additive and it carries short
exact sequences in N to short exact sequences in N ′. We say it reflects exactness if exactness of the
image in N ′ of a sequence of maps N1 → N2 → N3 in N forces exactness of the given sequence.

We thus have a category Exact whose objects are exact categories and whose arrows are exact
functors.

Any abelian category has a natural exact structure where “short exact sequence” has its usual
meaning, and every monomorphism and epimorphism is admissible.

General exact categories are characterized by the fact that they are full subcategories of abelian
categories which are closed under extension:

Theorem 1.1.3. Let N be an exact category. There exists an abelian category A and a fully faithful
exact functor i : N → A that reflects exactness and such thatN is closed under extensions in A, i.e. if
(1.1) is a short exact sequence in A with N ′, N ′′ in i(N ), then N is isomorphic to an object of i(N ).

Thus the short exact sequences ofN are identified with the short exact sequences ofA whose objects
are in i(N ).

We say that i : N ↪→ A is an admissible embedding of N .
For a proof, see [12, (A.7.1)] or [1, (A.1)]. We can see in [16, (Ex. II.7.8)] that if we define an

exact category as an additive category having an admissible embedding, then it is an exact category
by our definition.

Example 1.1.4. LetR be a ring and Proj(R) be the category of finitely generated projective modules
over R. It is an exact category, as it is a full subcategory of the category of R-modules which is
closed under extensions.

It is not an abelian category in general, though, since for instance it does not have all cokernels.

For example, the morphism Z ·2 // Z in Proj(Z) has Z/2Z as cokernel, which is not projective,
since projective Z-modules are free, but Z/2Z is torsion.

1.2 Waldhausen categories

We take our definitions from Waldhausen’s foundational article [14].

Definition 1.2.1. A category with cofibrations is a category with a fixed zero object ∗ endowed with
a subcategory co ⊂ C whose arrows, denoted by A // // B , are called cofibrations. They satisfy:

1. the isomorphisms of C are cofibrations,

2. for every A ∈ C the unique arrow ∗ → A is a cofibration,

3. the pushout of a cofibration along an arbitrary morphism exists and is a cofibration.

We remark that conditions 1 or 2 imply that co is a lluf subcategory, i.e. every object of C is in co .

If A // // B is a cofibration, we define B/A as a pushout: := ∗ ∪A B, and we denote by
B // // B/A the canonical map, called the quotient map. The sequence A // // B // // B/A

is called a cofibration sequence in C.
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1.2 Waldhausen categories

Observe that in a category with cofibrations we also have finite coproducts: if A,B ∈ C, then
A ∪∗ B is a coproduct of A and B in C, which we will denote by A tB.

Definition 1.2.2. A Waldhausen category is a category with cofibrations C endowed with a subcat-
egory w ⊂ C whose arrows, denoted by A

' // B , are called weak equivalences. They satisfy:

1. the isomorphisms of C are in w,

2. (Gluing axiom). In the following commutative diagram, where A // // B and A′ // // B′

are cofibrations, if the three solid vertical arrows are weak equivalences, then the induced
dashed arrow is one too.

B //

'
��

B ∪A C

'

��

A
>>

>>

//

'

��

C
>>

>>

'

��

B′ // B′ ∪A′ C ′

A′
>>

>>

// C ′
??

??

A Waldhausen category is thus a triple (C, co , w) but we will always denote one such triple by
wC or by C if we need not specify the subcategory of weak equivalences.

Observe that the gluing axiom implies that subcategories of weak equivalences are closed under
coproducts.

Convention 1.2.3. In order to avoid size issues, we will make the convention that Waldhausen
categories be skeletally small.

An exact functor F : C → D between Waldhausen categories is a functor that preserves all the
relevant structure: zero object, cofibrations, weak equivalences and pushouts along cofibrations.
This defines a category Wald with Waldhausen categories as objects and exact functors as arrows.

Example 1.2.4. Any exact category is a Waldhausen category. The admissible monomorphisms are
the cofibrations and the isomorphisms the weak equivalences. The gluing condition follows from
functoriality of pushouts.

In our particular applications we will consider exact categories with these cofibrations but we
will consider different categories of weak equivalences.

There are some additional axioms a Waldhausen category C may satisfy that can be handy.
These are the following:

• (Saturation axiom). If f and g are composable arrows in C and two out of three of f, g or
fg are weak equivalences, then so is the third.
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1.2 Waldhausen categories

• (Extension axiom). Suppose we have the following commutative diagram where the rows
are cofibration sequences:

A // //

��

B

��

// // B/A

��

A′ // // B′ // // B/A

If the left and right vertical maps are weak equivalences, then so is the middle one.

Definition 1.2.5. Let J be the following diagram category:

• //

��

•

��

•oo

��
•

A cylinder functor in a Waldhausen category C is a functor Arr C → CJ that carries an arrow
f : A→ B in C to a diagram like the following

A
j1
//

f
!!

T(f)

p

��

B
j2
oo

idB
}}

B

(1.2)

and it satisfies the following for every arrow f : A→ B in C and every arrow f → f ′ in Arr C as
depicted in the following commutative diagram:

A
f
//

α

��

B

β
��

A′
f ′
// B′

(i) the diagram (1.2) commutes,

(ii) T(∗ → A) = A and in this case j2 = p = idA,

( iii) the map A tB j1tj2
// T(f) is a cofibration,

(iv) if α and β are weak equivalences, then so is the induced map T(f)→ T(f ′),

(v) if α and β are cofibrations, then so are the induced map T(f) → T(f ′) and the induced
dashed arrow in the following pushout diagram:

A tB // j1tj2 //��

αtβ
��

T(f)

��

��

��

A′ tB′ // //
$$

j′1tj′2 --

P

##

T(f ′)
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1.3 Chain complexes

We call j1 the front inclusion, j2 the back inclusion and p the projection of T(f).

The following axiom may be satisfied by a Waldhausen category C with a cylinder functor:

• (Cylinder axiom). For every f : A → B in C, the projection p : T(f) → B is a weak
equivalence.

Remark 1.2.6. Let wC be Waldhausen category with a cylinder functor, satisfying the saturation
and cylinder axioms. If f : A→ B is a weak equivalence, then so is the front inclusion j1, because
f = p ◦ j1.

The following proposition is discussed in [12, (1.8.1)].

Proposition 1.2.7. Let wC be a Waldhausen category. Denote by Cw the full subcategory of C whose
objects A ∈ C are the ones such that the unique arrow ∗ → A is a weak equivalence (the “w-acyclic”
objects of C ). Then wCw is a Waldhausen category, where we understand that the w on the left means
w ∩ Cw.

If C is in fact an exact category andw ⊂ C satisfies the extension axiom, then Cw is an exact category.

Remark 1.2.8. If A ∈ Cw, B ∈ C and there is a weak equivalence A→ B, then B ∈ Cw since w is
closed under composition.

1.3 Chain complexes

In this section we fix terminology on chain complexes. Let N be an exact category.

We will denote by GrN the category of bounded Z-graded objects in N and by CN the
category of bounded chain complexes in N . We will denote the objects of CN as (N, d) where
N ∈ GrN and d is a differential on N . If there is no danger of confusion, we will omit the
differential from the notation. In this case, if we say that N is a chain complex, we will denote by
grN its underlying graded object.

The categories GrN and CN are exact categories. Indeed, if N ↪→ A is an admissible em-
bedding, then GrA and CA are abelian categories and the induced functors GrN → GrA and
CN → CA are admissible embeddings.

If N ∈ GrN and n ∈ Z, we denote by N [n] the bounded graded object that has Ni+n in degree
i. If N = (grN, d) ∈ CN , we denote by N [n] the bounded chain complex that has grN [n] as
underlying graded object and (−1)nd as differential.

If n > m are integers, we say that a bounded graded objectN or bounded chain complex (N, d)

is supported on the interval [n,m] if Ni = 0 for all i > n and i < m, and we say it has length n−m.
Seeing as we will only be working with the bounded case, we make the following

Convention 1.3.1. We will make the convention that graded objects and chain complexes be
bounded.

These constructions obviously define functors Gr, C : Exact → Exact. If n ∈ Z, shifting

defines natural transformations Exact

Gr
))

Gr

66�� [n] Exact and Exact

C
))

C

66�� [n] Exact .

9



1.4 Exact categories that support long exact sequences

1.3.1 Acyclicity

Recall that in an abelian category, a chain complex is exact if and only if it is obtained by splicing
together short exact sequences. Since in a general exact category we don’t have kernels or cokernels,
we can’t make the usual definition of exactness, but seeing as we have short exact sequences, we
promote this splicing criterion to a definition.

Definition 1.3.2. Let (N, d) ∈ CN . We say (N, d) is acyclic or that it is a long exact sequence if it is
obtained by splicing together short exact sequences ofN (called its component short exact sequences).
More explicitely, for every i ∈ Z there exist Zi ∈ N and arrows pi : Ni → Zi−1, ji : Zi → Ni

such that di : Ni → Ni−1 can be factored as Ni
pi // Zi−1

ji−1
// Ni−1 and

0 // Zi
ji // Ni

pi // Zi−1
// 0

is a short exact sequence in N . We display this data in the following commutative diagram where
the “∧”-shaped sequences are short exact:

· · · // Ni

pi
!!

di // Ni−1

pi−1
##

di−1
// Ni−2

// · · ·

Zi

ji

>>

Zi−1

ji−1

;;

##

Zi−2

ji−2

;;

##
0

>>

0

<<

0

;;

0

Remark 1.3.3. 1. The differentials di in an acyclic chain complex have a kernel and a cokernel,
and they are ji and pi−1 respectively. Indeed, we have

ji = ker pi = ker(ji−1 ◦ pi) = ker di

and similarly for the cokernel.

In particular, the component short exact sequences of an acyclic chain complex are unique
up to isomorphism.

2. If N is supported on [n,m] then Zi = 0 for every i ≥ n, Zm = Nm and Zi = 0 for every
i < m.

3. An exact functor between exact categories preserves acyclic chain complexes, for it preserves
a factorization into short exact sequences.

1.4 Exact categories that support long exact sequences

There is a technical condition that will be quite convenient to adopt:

Definition 1.4.1. LetN be an exact category. If there exists an admissible embeddingN ↪→ A such
that every long exact sequence in A whose objects are in N also has the kernels of its differentials
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1.5 Quasi-isomorphisms in CN

in N , we say that N supports long exact sequences. In this case, we will say that this embedding
evidences the fact that N supports long exact sequences.

We will denote by Exactles the full subcategory of Exact whose objects are exact categories
that support long exact sequences.

In the previous definition, we can replace “kernels” by “cokernels”, “images” or “coimages”.

Remark 1.4.2. There is a stronger condition appearing naturally. Let N ↪→ A be an admissible
embedding. We say that N is closed under kernels of epimorphisms if whenever a map f : N → N ′′

in N is an epimorphism in A, we have that ker f is in N .
We claim that a category closed under kernels of epimorphisms supports long exact sequences.

Let (N, d) be a long exact sequence in A supported in [n,m] whose objects are in N . We have the
following short exact sequence in A:

0 // ker dm+1
// Nm+1

d // Nm
// 0

Since N is closed under kernels of epimorphisms, we have that ker dm+1 ∈ N . We then proceed
inductively: we consider the short exact sequence in A

0 // ker dm // Nm
d // ker dm+1

// 0

whence ker dm ∈ N , and so on.

Remark 1.4.3. Let N be an exact category that supports long exact sequences, as evidenced by an
admissible embedding N ↪→ A. Then the induced admissible embedding CN ↪→ CA shows that
CN supports long exact sequences, too. This is true since kernels in CN are computed degreewise.

Example 1.4.4. The category Proj(R) is closed under kernels of epimorphisms, hence supports
long exact sequences. Indeed, if f : P → P ′′ is an epimorphism of finitely generated projective
R-modules, then its kernel is a direct summand of P , hence projective. Observe that any finitely
generated projective module is finitely presented. Therefore ker f is finitely generated, being the
kernel of an epimorphism from a finitely generated projective module to a finitely presented one
[10, (3.11), (3.13)].

1.5 Quasi-isomorphisms in CN

Let N be an exact category.
We will now endow CN with a category of weak equivalences coarser than isomorphism that

will turn it into a Waldhausen category if N supports long exact sequences.

Definition 1.5.1. Let f : (N, dN )→ (M,dM ) be a map in CN .

• The mapping cone of f , denoted by cone(f), is the chain complex that has N [−1] ⊕M as
underlying graded object and

(
−dN 0
f dM

)
as differential.

• The mapping cylinder of f , denoted by T(f), is the chain complex that has N ⊕N [−1]⊕M

as graded object and
(
dN − id 0
0 −dN 0
0 f dM

)
as differential. The inclusion on the first factor λ : N →

11



1.5 Quasi-isomorphisms in CN

T(f) will be called the front inclusion, the inclusion on the third factor ρ : M → T(f) will
be called the back inclusion, and the map π = ( f 0 idM ) : T(f) → M will be called the
projection.

Remark 1.5.2. 1. If f : N →M is chain map, there is a short exact sequence in CN :

0 //M // cone(f) // N [−1] // 0

where the first map is inclusion on the second summand and the second map is minus the
projection on the first summand.

2. If F : N → M is an arrow in Exact, then a straightforward computation shows that
CF : CN → CM preserves mapping cones: (CF )(cone(f)) = cone((CF )(f)).

Definition 1.5.3. We say that a chain map f : N →M is a quasi-isomorphism if cone(f) is acyclic.

In an abelian category, we usually define a quasi-isomorphism to be a chain map that is an
isomorphism in homology, but this is equivalent to having an acyclic cone ( [15, (1.5.4)]), thus the
two definitions are compatible.

Remark 1.5.4. From remarks 1.5.2.2 and 1.3.3.3 we see that if F : N →M is an arrow in Exact,
then CF : CN → CM preserves quasi-isomorphisms.

We now record some useful consequences that the condition of supporting long exact sequences
has in the quasi-isomorphisms.

Remark 1.5.5. SupposeN supports long exact sequences, as evidenced by an admissible embedding
N ↪→ A.

1. A chain complex in CN is acyclic in CN if and only if it is acyclic in CA. The very
definition of supporting long exact sequences is engineered in a way that this assertion is
true. This observation implies the following ones.

2. A chain map in CN is a quasi-isomorphism in CN if and only if it is a quasi-isomorphism
in CA.

3. In a short exact sequence in CN , if two of the terms are acyclic then so is the third (for
abelian categories, this is the diagram chase in [15, Ex. (1.3.1)]).

4. Any map between acyclic chain complexes in CN is a quasi-isomorphism. In particular, if
N is an acyclic chain complex, then the maps 0→ N and N → 0 are quasi-isomorphisms.

Lemma 1.5.6. Let A be an abelian category and consider a morphism between short exact sequences
in CA:

0 // A

α

��

// B //

β
��

C

γ

��

// 0

0 // A′ // B′ // C ′ // 0

If two of α, β, γ are quasi-isomorphisms, then so is the third.

12



1.5 Quasi-isomorphisms in CN

Proof. Suppose α, β are quasi-isomorphisms. Then γ is a quasi-isomorphism by the five lemma, as
shown in the following commutative ladder of long exact sequences of homology:

Hn(A)

∼=
��

// Hn(B)

∼=
��

// Hn(C) //

��

Hn−1(A)

∼=
��

// Hn−1(B)

∼=
��

Hn(A′) // Hn(B′) // Hn(C ′) // Hn−1(A′) // Hn−1(B′)

The other two cases follow analogously.

Proposition 1.5.7. Suppose N supports long exact sequences. The quasi-isomorphisms in CN are a
lluf subcategory q ⊂ CN such that qCN is a Waldhausen category that satisfies the saturation and
extension axioms, and the mapping cylinder defines a cylinder functor that satisfies the cylinder axiom
and such that the back inclusion is a quasi-isomorphism.

Proof. We keep as cofibrations the admissible monomorphisms (remark 1.2.4). We first check that
qCN is actually a category of weak equivalences.

Let N ↪→ A be an admissible embedding of N into an abelian category that shows that N
supports long exact sequences, so we can freely use remark 1.5.5.2: a chain map in CN is a
quasi-isomorphism in CN if and only if it is so in CA.

• q is a subcategory of CN . We need to check that identities are quasi-isomorphisms and that
the composition of quasi-isomorphisms is a quasi-isomorphism. This is trivial in CA, by
functoriality of homology.

• The isomorphisms of CN are quasi-isomorphisms. Again, functoriality of homology gives
the result.

• We will now prove that the gluing axiom is satisfied. Consider the following cube in CN :

B
h //

'β

��

P

r

��

A
>>

f
>>

g
//

'α

��

C
==

i

==

'γ

��

B′
h′ // P ′

A′
>> f ′

>>

g′
// C ′
>> i′

>>

where P = B ∪A C, P ′ = B′ ∪A′ C ′ and r is the induced arrow, which we need to prove is
a quasi-isomorphism.

We now work in CA, where we have homology at our disposal.

LetE = coker f , E′ = coker f ′ and e be the induced map as shown in the following diagram:

13



1.5 Quasi-isomorphisms in CN

0 // A

α '
��

f
// B //

β '
��

E

e

��

// 0

0 // A′
f ′
// B′ // E′ // 0

Similarly, let L = coker i, L′ = coker i′ and ` : L→ L′ be the induced map as shown in the
following diagram:

0 // C

γ '
��

i // P //

r

��

L

`
��

// 0

0 // C ′
i′
// P ′ // L′ // 0

By lemma 1.5.6 it follows that e is a quasi-isomorphism. By the same lemma, to prove that r
is a quasi-isomorphism it suffices to see that ` is one.

Let s be the following induced arrow on cokernels:

0 // A

g

��

f
// B //

h
��

E

s

��

// 0

0 // C
i
// P // L // 0

Recall that in an abelian category, the cokernels of a pair of parallel arrows in a pushout are
compatibly isomorphic. Thus s is an isomorphism. Putting primes over every letter in the
last diagram, we obtain an arrow s′ : E′ → L′ which is also an isomorphism.

A straightforward diagram chase proves that the following diagram commutes:

E
s //

e

��

L

`
��

E′
s′
// L′

Taking homology we have the following commutative diagram:

Hn(E)
s∗
∼=
//

e∗ ∼=
��

Hn(L)

`∗
��

Hn(E′)
s′∗

∼= // Hn(L′)

Thus `∗ is an isomorphism for all n, therefore ` is a quasi-isomorphism.

• The saturation axiom follows from functoriality of homology.

• The extension axiom follows from lemma 1.5.6.

14



1.5 Quasi-isomorphisms in CN

• We now check that the mapping cylinder verifies the cylinder conditions and its axiom. First
observe that the cylinder construction is functorial: if we have the following morphism of
chain maps,

N
f
//

α

��

M

β
��

N ′
f ′
//M ′

we define T(f)→ T(f ′) as
(
α 0 0
0 α 0
0 0 β

)
, where the α in the middle is to be understood as α[−1],

a slight abuse of notation we will allow ourselves to incur in more than once. It is immediate
that identities and compositions are respected.

We now verify the conditions from definition 1.2.5:

(i) The following diagram commutes by construction:

N
λ //

f
!!

T(f)

π
��

M
ρ
oo

id
||

M

(ii) T(0→ N) ∼= N and its back inclusion and projection are identities under this identifi-
cation.

(iii) j1 ⊕ j2 is an admissible monomorphism since there is a short exact sequence in CN :

0 // N ⊕M j1⊕j2
// T(f)

( 0 id 0 )
// N [−1] // 0

(iv) The induced map T(f) → T(f ′) is a quasi-isomorphism if α and β are. To see this,
consider the following commutative diagram with exact rows:

0 // N ⊕M

α⊕β
��

j1⊕j2
// T(f)

��

( 0 id 0 )
// N [−1]

α

��

// 0

0 // N ′ ⊕M ′
j′1⊕j′2

// T(f ′)
( 0 id 0 )

// N ′[−1] // 0

The right vertical map is a quasi-isomorphism, and since homology preserves finite
direct sums, the left vertical map is one too. Applying lemma 1.5.6 we get that the map
T(f)→ T(f ′) is a quasi-isomorphism.

(v) Suppose now that α and β are admissible monomorphisms. First, let us check that
T(f) → T(f ′) is one too. The maps α and β fit into short exact sequences as in the
following commutative diagram, where f ′′ is the induced map in cokernels:

0 // N

f

��

α // N ′

f ′

��

α′ // N ′′ //

f ′′

��

0

0 //M
β
//M ′

β′
//M ′′ // 0
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1.5 Quasi-isomorphisms in CN

Let C be the chain complex having N ′′ ⊕N ′′[−1]⊕M ′′ as underlying graded object,

and
(
d − id 0
0 −d 0
0 f ′′ d

)
as differential. It is readily checked that the square of this matrix map

is zero. Consider the following sequence:

0 // T(f)

(
α 0 0
0 α 0
0 0 β

)
// T(f ′)

(
α′ 0 0
0 α′ 0
0 0 β′

)
// C // 0

The second map is indeed a chain map because the differential of C was thus engineered.
Now, the forgetful functor CN → GrN that “forgets the differential” reflects exactness,
by definition of the exact structures of CN and GrN . This proves that the above
sequence is short exact in CN , since it is so in GrN , being a direct sum of short exact
sequences (proposition [1, (2.9)]).
Let us now identify the following pushout:

N ⊕M //
j1⊕j2

//
��

α⊕β
��

T(f)

��

N ′ ⊕M ′ // P

(1.3)

Let A be the chain complex having N ′⊕N [−1]⊕M ′ as underlying graded object, and(
0 −d 0
d −α 0
0 βf d

)
as differential. It is readily checked that the square of this matrix map is zero.

Consider the following diagram.

N ⊕M //
j1⊕j2

//
��

α⊕β

��

T(f) //

(α 0 0
0 id 0
0 0 β

)
��

N [−1]

id

��

N ′ ⊕M ′ (
id 0
0 0
0 id

)// A // N [−1]

(1.4)

It is indeed a commutative diagram in CN : the differential in A is engineered so as
to make the displayed matrix maps N ′ ⊕M ′ → A and T(f)→ A commute with the
differentials.
Its top and bottom row are short exact sequences: this follows by lemma [1, (2.7)]),
using the fact that the forgetful functor CN → GrN reflects exactness. Therefore the
left square of (1.4) is a pushout (proposition [1, (2.12)]).
Having identified the pushout in (1.3), we will now identify the induced arrow h mak-
ing the following diagram commute, and then prove that it is an admissible monomor-
phism.
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1.5 Quasi-isomorphisms in CN

N ⊕M //
j1⊕j2

//
��

α⊕β
��

T(f) (
α 0 0
0 α 0
0 0 β

)

		

(α 0 0
0 id 0
0 0 β

)
��

N ′ ⊕M ′ (
id 0
0 0
0 id

)//

j′1⊕j′2
11

A
h

##

T(f ′)

(1.5)

It is immediate that h =
(

id 0 0
0 α 0
0 0 id

)
, since this matrix map indeed commutes with the

differentials and makes diagram (1.5) commute.
Consider the following sequence:

0 // A
h // T(f ′)

( 0 α′ 0 )
// N ′′[−1] // 0

Once again, since the forgetful functor CN → GrN reflects exactness, we see that it is
a short exact sequence in CN .
This proves that h is an admissible monomorphism.

Let us check that the back inclusion is a quasi-isomorphism. We have an obvious short exact
sequence in CN :

0 //M
ρ
// T(f) // cone(− idN ) // 0

Considering its long exact sequence in homology, since − idN is a (quasi)-isomorphism we
see that ρ is a quasi-isomorphism.

It now follows that π is a quasi-isomorphism and thus the cylinder axiom is satisfied. Indeed,
functoriality of homology applied to the equality πρ = idM yields the result.

Remark 1.5.8. Remark 1.5.4 gives that if F : N →M is an arrow in Exactles, then CF : CN →
CM verifies (CF )(q) ⊂ q. We thus have an obvious functor qC : Exactles →Wald.

Corollary 1.5.9. SupposeN supports long exact sequences. Then CqN := (CN )q is an exact category
that supports long exact sequences.

Proof. The category CqN is exact by virtue of proposition 1.2.7. It has kernels of epimorphisms,
thanks to remark 1.5.5.3, thus it supports long exact sequences (remark 1.4.2).

Remark 1.5.10. 1. Since exact functors between exact categories preserve quasi-isomorphisms
(remark 1.5.4), we have a functor Cq : Exactles → Exactles.

2. By way of remark 1.5.5.2 we see that the category CqN is the full subcategory of CN
consisting of acyclic chain complexes.
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1.6 Binary chain complexes

1.6 Binary chain complexes

Let N be an exact category.

Definition 1.6.1. A binary chain complex in N is a chain complex in N with two differentials.
More formally, it is a triple (N, d, d′) where N ∈ GrN and d, d′ are differentials on N . We say
that d is the top differential and that d′ is the bottom differential. We say (N, d, d′) is bounded if N
is.

We will sometimes write N to mean a binary chain complex, not specifiying its differentials.
In this case we will write grN to mean the underlying graded object.

If n > m are integers, we say that a binary chain complex N is supported on the interval [n,m]

if Ni = 0 for all i > n and i < m, and we say it has length n−m.
A morphism between two binary chain complexes is a map between the underlying graded

objects that commutes with both differentials.
We will denote by BN the category of bounded binary chain complexes.

Convention 1.6.2. We will make the convention that binary chain complexes be bounded.

Definition 1.6.3. The diagonal functor is the functor ∆ : CN → BN that maps (N, d) to (N, d, d)

objectwise and is defined obviously on morphisms.
The top and bottom functors >,⊥ : BN → CN map (N, d, d′) to (N, d) and (N, d′) respec-

tively, and are defined obviously on morphisms.
We say that a short sequence in BN is a short exact sequence, or that a binary chain complex is

acyclic, if and only if its images under the functors > and ⊥ have the same property.

This turns BN into an exact category and ∆,>,⊥ into exact functors.
If N supports long exact sequences, then so does BN , just like in remark 1.4.3.

Definition 1.6.4. We define three lluf subcategories of BN :

• The category q, whose morphisms (called quasi-isomorphisms) are the ones such that their
images under > and ⊥ are quasi-isomorphisms in CN ,

• The category t, whose morphisms are the ones such that their image under > is a quasi-
isomorphism in CN ,

• The category b, whose morphisms are the ones such that their image under ⊥ is a quasi-
isomorphism in CN .

Let us observe how all of these actors fit together:

Remark 1.6.5. 1. The categories qBN , tBN and bBN are Waldhausen categories that satisfy
the saturation and extension axioms, and the functors ∆ : qCN → qBN , >,⊥ : qBN →
qCN , > : tBN → qCN , ⊥ : bBN → qCN are exact. The verifications of these assertions
are completely analogous to the ones for qCN .

We can also create through > and ⊥ a cylinder functor in these three categories that satisfies
the cylinder axiom. To illustrate, if f : (N, d, d′) → (M, e, e′) is an arrow in qBN , define
T(f) ∈ qBN as the binary chain complex having N ⊕ N [−1] ⊕M as underlying graded
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1.6 Binary chain complexes

object,
(
d − id 0
0 −d 0
0 f e

)
as top differential and

(
d′ − id 0
0 −d′ 0
0 f e′

)
as bottom differential. This defines

a cylinder functor in qBN together with the projection and front and back inclusions we
have already considered for qCN , since they commute with both differentials. Observe that
>T(f) = T(>f) and ⊥T(f) = T(⊥f).

2. Define BqN := (BN )q, BtN := (BN )t and BbN := (BN )b as per proposition 1.2.7. IfN
supports long exact sequences, then BqN , BtN and BbN are exact categories that support
long exact sequences, whose objects are respectively the binary chain complexes with both
differentials acyclic, which we call acyclic binary chain complexes, the binary chain complexes
with acyclic top differential, and the binary chain complexes with acyclic bottom differential,
just as we saw in corollary 1.5.9 and remark 1.5.10.2 for CqN .

3. The categories BtN and BbN also admit the quasi-isomorphisms q as a category of weak
equivalences. We have then Waldhausen categories qBtN and qBbN . We also have categories
of weak equivalences b ⊂ BtN and t ⊂ BbN . But observe that tBbN = qBbN and
bBtN = qBtN . Indeed, the reverse inclusion is obvious, and the forward one follows
because any morphism between acyclic chain complexes is a quasi-isomorphism (remark
1.5.5.4).

4. Observe that ∆ : CqN → BqN , >,⊥ : BqN → CqN , > : BtN → CqN and ⊥ :

BbN → CqN are exact functors, since indeed they map acyclic (binary) chain complexes to
acyclic (binary) chain complexes.

Some functoriality and naturality remarks are in order:

Remark 1.6.6. 1. Functoriality remarks for binary chain complexes are similar to the ones we
did for chain complexes. We have a functor B : Exact → Exact. If F : N → M is an
exact functor between exact categories, then BF preserves quasi-isomorphisms. We also
have functors qB, tB, bB : Exactles → Wald, Bq, Bt, Bb : Exactles → Exactles and
qBb = tBb, qBt = bBt : Exactles →Wald.

2. We have three different ways to exhibit ∆ as a natural transformation:

Exact

C
((

B

77�� ∆ Exact Exactles

qC
))

qB

66�� q∆ Wald Exactles

Cq

))

Bq

55�� ∆q Exactles

If F : N →M is an arrow in Exact for the first case and in Exactles for the second and
third cases, we have three commutative squares:

CM ∆ //

CF
��

BM
BF
��

CN
∆
// BN

qCM q∆
//

qCF

��

qBM

qBF

��

qCN
q∆
// qBN

CqM ∆q
//

CqF
��

BqM
BqF
��

CqN
∆q
// BqN

We will sometimes denote any of these three natural transformations merely by ∆. There is
no danger of confusion if domain and codomain are specified.
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1.6 Binary chain complexes

3. As for > and ⊥, we can exhibit them like this:

Exact

B
))

C

66�� >,⊥ Exact Exactles

qB
**

qC

55�� q>,q⊥ Wald Exactles

Bq

))

Cq

55�� >
q ,⊥q Exactles

Exactles

tB
))

qC

66�� t> Wald Exactles

Bt

))

Cq

55�� >t Exactles

Exactles

bB
))

qC

66�� b⊥ Wald Exactles

Bb

))

Cq

55�� ⊥b Exactles

We will sometimes denote any of these merely by > or ⊥. There is no danger of confusion
if domain and codomain are specified.

4. Recall that specifying a natural transformation C
&&

88�� D is the same as specifying a func-

tor C → ArrD. We will use this observation more than once for the natural transformations
above.

Definition 1.6.7. Suppose we are given N,P ∈ BN and chain maps r : >N → >P and r′ :

⊥N → ⊥P . We define the binary mapping cylinder T(r, r′) ∈ BN of r and r′ as follows.
Observe that the mapping cylinders T(r) and T(r′) have the same underlying graded object,

namely grN ⊕ grN [−1] ⊕ grP . Thus we can paste T(r) and T(r′) into a binary chain complex,
with top (resp. bottom) differential given by the differential of T(r) (resp. T(r′)).

The two front inclusions >N → T(r) and ⊥N → T(r′) agree on underlying graded objects
(they are just inclusions in the first variable), thus they give a map λ : N → T(r, r′) which we also
call front inclusion.

We similarly define the back inclusion.

Remark 1.6.8. 1. This is not the mapping cylinder of qBN considered in 1.6.5.1, and it cannot
be a cylinder in the sense of definition 1.2.5. Indeed, such a cylinder is defined for a map
between binary chain complexes, whereas this “binary mapping cylinder” is defined for two
maps between the underlying chain complexes of a binary chain complex.

2. There is no sensible way to define a “projection” for the binary mapping cylinder in the vein
of definition 1.2.5, since the projections of T(r) and T(r′) do not agree on underlying graded
objects, as they depend on r and r′.

3. >T(r, r′) = T(r) and ⊥T(r, r′) = T(r′).

4. The back inclusion is a quasi-isomorphism, because it is so for the back inclusions in qCN
(proposition 1.5.7).
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1.7 K-theory of Waldhausen categories

From this section on we will be dealing with spectra. For us, the category Spectra of spectra is
taken to mean the category of CW -spectra.

There is a functor K from the category of Waldhausen categories to the category of connective
Ω-spectra. If i ≥ 0, the composition with the πi functor from the category of spectra to the
category of abelian groups gives the functor Ki : Wald→ Ab.

The construction of the functor K can be found in [14, (1.3)] or in [16, (IV.8)], for example;
we will not be using it.

One advantage of working with K-theory spectra instead of spaces is the fact that (homotopy)
fibrations and cofibrations coincide. We will use this convenient fact more than once.

We will also be using relative K-theory. Let F : wC → vD be an exact functor between
Waldhausen categories. There is a relative K-theory connective spectrum K[F ] that fits into a
homotopy fibration sequence as follows:

KwC KF // KvD // K[F ]

There is an explicit construction of K[F ], of the map KvD → K[F ] and of a nullhomotopy
of the composition in [14, (1.5.7)]; these are summarized in [4, (A.4)].

This construction is functorial: there is a functor K : Arr (Wald) → Spectra that maps a
commutative square of exact categories to the induced map between homotopy cofibers of their
induced maps in K-theory, presented in the following commutative diagram:

KwC KF //

��

KvD //

��

K[F ]

��

Kw′C′ KG // Kv′D′ // K[G]

Remark 1.7.1. There are K-functors K : Exact→ Spectra and K : Arr (Exact)→ Spectra,
defined by the inclusion Exact ↪→ Wald that considers an exact category as a Waldhausen
category with the isomorphisms as quasi-isomorphisms (example 1.2.4). We can also take them
to be Quillen’s K-theory defined for exact categories, see [14, (1.9)] for a proof that both of these
coincide in this framework.

Definition 1.7.2. Given a category C and two functors F,G : C → Spectra, we define a natural
homotopy equivalence τ : F ⇒ G to be a family {τC : FC → GC}C∈C of homotopy equivalences
in Spectra such that the following square is homotopy commutative for any f : C → C ′ in C:

FC
τC //

Ff
��

GC

Gf
��

FC ′ τC′
// GC ′
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1.7 K-theory of Waldhausen categories

A natural zigzag homotopy equivalence between F andG is defined as a finite sequence of natural
homotopy equivalences having F and G as their ends and going in any direction.

For example, F ⇒ H ⇐ G is a natural zigzag homotopy equivalence between F and G

provided both double arrows are natural homotopy equivalences.
We will denote a natural zigzag homotopy equivalence from F to G as F

'
G or as

C
F

))

G

55

�O
�O ' Spectra .

Remark 1.7.3. Given a natural zigzag homotopy equivalence as above and a functor P : Spectra→
Ab that descends to the homotopy category of spectra (such as the homotopy functors), com-

posing them we get a natural isomorphism C
PF

''

PG

99�� ∼= Ab . Indeed, homotopy equivalences are

mapped to isomorphisms which are invertible maps, so that we get honest arrows PFC → PGC

for any C ∈ C, and for the same reason homotopy commutative squares yield naturality squares.

We now cite the properties we will be using.

Proposition 1.7.4. Let wC be a Waldhausen category. Then K0(wC) is the abelian group with the
following presentation: it has one generator [C] per object C ∈ C, and these are subject to the relations

• [C] = [C ′] if there is a weak equivalence C → C ′,

• [C] = [B] + [C/B] for every cofibration sequence B // // C // // B/C

Moreover, if F : wC → vD is an exact functor between Waldhausen categories, then K0F :

K0(wC)→ K0(vD) maps [C] to [FC] for every C ∈ C.

Observe that if C is actually an exact category and w are the isomorphisms, then the first
condition follows from the second one.

For a proof, see [16, IV.8.4].

Proposition 1.7.5 (Compatibility with finite products and filtered colimits). If N ,M are exact
categories, then K(N ×M) ∼= KN ×KM.

Let J be a small filtered category. Let J → Exact, i 7→ Ni be a functor. Then the colimit
lim−→Ni ∈ Exact exists, and K(lim−→Ni) = lim−→(KNi). In particular Kn(lim−→Ni) = lim−→Kn(Ni) for
every n ≥ 0.

For a proof, see [16, p. 351].

Definition 1.7.6. Let F, F ′, F ′′ : N → M be exact functors between exact categories. Suppose
we have a sequence of natural transformations F ′ → F → F ′′. We say that it is a short exact
sequence and we write 0 → F ′ → F → F ′′ → 0 if for every N ∈ N the induced sequence
0→ F ′N → FN → F ′′N → 0 is short exact inM.

Theorem 1.7.7 (Additivity theorem). If 0→ F ′ → F → F ′′ → 0 is a short exact sequence of exact
functors between exact categories, then there is a homotopy of maps of spectra KF ' KF ′ +KF ′′.
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For a proof, see [16, (V.1.2)], [14, (1.3.2), (1.4.2)] or [12, (1.7.2)]. There’s also an analogue for
general Waldhausen categories but we won’t be needing it.

Definition 1.7.8. Let F,G : wC → vD be exact functors between Waldhausen categories. We
say that a natural transformation τ : F ⇒ G is a weak equivalence if for every C ∈ C the map
τC : FC → GC is a weak equivalence in vD.

Proposition 1.7.9. A weak equivalence F ⇒ G induces a homotopy of maps from KF to KG.

For a proof, see [14, (1.3.1)].

Theorem 1.7.10 (Waldhausen’s localization theorem). Let C be a category with cofibrations, and let
v, w ⊂ C be categories of weak equivalences in C with v ⊂ w. Suppose wC satisfies the saturation and
extension axioms, and it has a cylinder functor that satisfies the cylinder axiom. Then the inclusions
vCw → vC and vC → wC induce a homotopy fibration sequence:

KvCw // KvC // KwC

Here the specified nullhomotopy for the composition is given as follows. If i : vCw → wC is the
inclusion functor, then we have a weak equivalence 0⇒ i and therefore by 1.7.9 a nullhomotopy of Ki.

For a proof, see [14, (1.6.4)], [12, (1.8.2)] or [16, (V.2.1)].

Theorem 1.7.11 (Thomason’s cofinality theorem). Let vC be a Waldhausen category with a cylinder
functor satisfying the cylinder axiom. Let G be an abelian group and π : K0vC → G an epimorphism.
Let Cπ be the full subcategory of C whose objects are those C ∈ C for which the class [C] ∈ K0vC is in
kerπ. Then Cπ is a Waldhausen category with cofibrations (resp. weak equivalences) the cofibrations (resp.
weak equivalences) those of C which are in Cπ . Denote also by v the subcategory of weak equivalences of
Cπ.

Let “G” denote the Eilenberg-Mac Lane spectrum of G whose only non-zero homotopy group is G in
degree 0. Then there is a homotopy fibration sequence of spectra:

K(vCπ)→ K(vC)→ “G”

where the first map is induced by inclusion.
In particular, the mapK(vCπ)→ K(vC) induces isomorphismsKi(vCπ) ∼= Ki(vC) for i > 0 and

there is a short exact sequence of abelian groups:

0 // K0(vCπ) // K0(vC) π // G // 0

For a proof, see [12, (1.10.1)] or [16, (V.2.3)].

We have a natural transformation Exactles

id
))

qC

66�� i Wald , where if N ∈ Exactles then

iN : N ↪→ qCN is the functor that concentrates an object in degree zero. When we take K-theory,
we obtain the following
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Theorem 1.7.12 (Gillet-Waldhausen). There is a natural homotopy equivalence

Exactles

K
**

KqC

44��Ki ' Spectra

For a proof, see [12, (1.11.7)] or [16, (V.2.2)].

Theorem 1.7.13 (Waldhausen’s approximation theorem). Let F : wC → vD be an exact functor
between Waldhausen categories such that wC satisfies the saturation axiom, has a cylinder functor and
satisfies the cylinder axiom, and vD satisfies the saturation axiom. Suppose F satisfies the following
conditions:

1. F reflects weak equivalences, i.e. if f is an arrow in C such that Ff ∈ v then f ∈ w.

2. (Approximation property.) If C ∈ C, D ∈ D and f : FC → D, there exists a C ′ ∈ C, a map
a : C → C ′ and a weak equivalence f ′ : FC ′ → D such that the following diagram commutes:

FC ′

' f ′

��

FC

Fa

??

f
// D

Then F induces a homotopy equivalence KF : KwC → KvD.

For a proof, see [12, (1.9.1)], [14, (1.6.7)] or [16, (V.2.4)].
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Chapter 2

The relative K-theory of ΩN

Let N be an exact category that supports long exact sequences.

Recall (remark 1.6.6.2) that there are three natural transformations given by ∆:

Exact

C
((

B

77�� ∆ Exact Exactles

qC
))

qB

66�� q∆ Wald Exactles

Cq

))

Bq

55�� ∆q Exactles (2.1)

The last one is the main tool that will allow us to describe the K-groups of N by generators
and relations.

We recall observation 1.6.6.4. We will use it freely from now on.

Definition 2.0.14. We will denote by Ω the functor ∆q : Exactles → Arr (Exactles). More

explicitely, ΩN is the exact functor CqN ∆ // BqN . If F :M→N is an exact functor between
exact categories, then ΩF is the following arrow in Arr (Exactles):

CqM ∆ //

CqF
��

BqM
BqF
��

CqN
∆
// BqN

We will also denote by Ω the inverse of the suspension isomorphism: Ω := Σ−1 : Spectra→
Spectra. It passes to the homotopy category as an isomorphism too. Explicitely, if X is a
spectrum then ΩX is the shifted spectrum X[−1], and it is defined obviously on morphisms.

The relative K-theory spectrum K[CqN ∆→ BqN ], which we will write as KΩN , fits into a
homotopy fibration sequence as follows:

KCqN K∆ // KBqN // KΩN

If F :M→N is an arrow in Exactles, we have an induced map KΩF : KΩM→ KΩN in
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'

KqBb

relative K-theory, making the following diagram commute:

KCqM K∆ //

KCqF
��

KBqM //

KBqF
��

KΩM
KΩF
��

KCqN K∆ // KBqN // KΩN

The functor KΩ is what we aim to describe in this chapter. From this description we will be
able to obtain a natural presentation of K1N in the final chapter.

2.1 A stepping stone: KΩ ' KqBb

The first ∆ : CN → BN in (2.1) becomes a homotopy equivalence after passing to K-theory:

Lemma 2.1.1. There is a natural homotopy equivalence Exact

KC
**

KB

44�� K∆ Spectra .

Proof. Since ∆ is natural, K∆ is too; we need to check that K∆ : KCN → KBN is a homotopy
equivalence.

For n > m we let CN[n,m] (resp. BN[n,m], GrN[n,m]) denote the full exact subcategory of
CN (resp. BN , GrN ) whose objects are the chain complexes (resp. binary chain complexes,
graded objects) supported in [n,m]. The diagonal functor ∆ : CN → BN restricts to functors
∆ : CN[n,m] → BN[n,m].

There are “forget the differential(s)” functors CN[n,m] → GrN[n,m] and BN[n,m] → GrN[n,m]

making the following square commute:

CN[n,m]
∆ //

��

BN[n,m]

��

GrN[n,m] id
// GrN[n,m]

(2.2)

To prove that K∆ : KCN[n,m] → KBN[n,m] is a homotopy equivalence, it suffices to see
that the vertical functors in the previous diagram induce homotopy equivalences in K-theory. We
postpone the proof of this to lemma 2.1.2 below, and we now concern ourselves with the general
case.

We have inclusions CN[n,−n] → CN[n+1,−n−1] (resp. GrN[n,−n] → GrN[n+1,−n−1]) for n > 0.
Taking colimits in the diagrams (2.2) for these intervals, we obtain the following commutative
square:

CN ∆ //

��

BN

��

GrN
id
// GrN
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Thus what we have just seen combined with compatibility of K-theory with filtered colim-
its (proposition 1.7.5) and the fact that the colimit of homotopy equivalences is a homotopy
equivalence prove the lemma.

To complete the above proof, we prove the following lemma, which is exercise [16, (V.1.5)].

Lemma 2.1.2. The “forget the differential(s)” functorsCN[n,m] → GrN[n,m] andBN[n,m] → GrN[n,m]

introduced in the proof of lemma 2.1.1 induce homotopy equivalences of K-theory spectra, for any
n ≥ m.

Proof. We will prove it for chain complexes. The result for binary chain complexes is proven
analogously.

We proceed by induction on n−m. If n−m = 0 the result is obvious. For the general case
we will use the additivity theorem.

Let us introduce some notation: A = CN[m,m], B = CN[n,m] and C = CN[n,m+1]. Denote by
i and j the inclusion functors A → B, C → B respectively.

We define functors F ′ : B → A and F ′′ : B → C truncating the complexes, as follows. For
a chain complex Cn → · · · → Cm, the functor F ′ maps it to Cm and the functor F ′′ maps it to
Cn → · · · → Cm+1. They are defined obviously on arrows. We have a short exact sequence of
functors 0→ iF ′ → idB → jF ′′ → 0, where the first natural transformation is given by inclusion
of chain complexes and the second one by quotienting:

0 // . . . //

��

0 // Cm

Cn // . . .

��

// Cm+1
// Cm

Cn // . . . // Cm+1
// 0

The additivity theorem 1.7.7 gives a homotopy

KiF ′ +KjF ′′ ' idKB (2.3)

Consider the composition A×C → B×B → B where the first functor is i× j and the second
functor is the coproduct. Denote the composite functor by π.

Consider the composition B → B×B → A×C, where the first functor is the obvious diagonal
functor and the second one is the product F ′ × F ′′. Denote the composite functor by ϕ.

We have therefore two functors A× C
π // B
ϕ
oo satisfying ϕ ◦ π = id, therefore Kϕ ◦Kπ =

idKA×KC , recalling that K(A× C) ∼= KA×KC (proposition 1.7.5).
Observe that π◦ϕ = iF ′×jF ′′. Passing toK-theory we get thatKπ◦Kϕ = K(iF ′×jF ′′) =

KiF ′ +KjF ′′. Indeed, the H -space structure of KB is induced by the product: see the proof of
[16, (V.1.2)] or [14, (1.3.3)].

Combining this with (2.3) we get thatKπ andKϕ are mutually inverse homotopy equivalences.
Recalling the definitions ofA, B and C, the induction hypothesis and the base case combine to give
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that the following composition, which is the “forget the differential” functor, yields a homotopy
equivalence in K-theory:

CN[n,m]
ϕ
// CN[m,m] × CN[n,m+1]

// GrN[m,m] ×GrN[n,m+1]

∼= // GrN[n,m]

This finishes the proof.

We will now see that there is a homotopy equivalence from the relative K-theory of the last ∆

in (2.1) (which is Ω) to the loop spectrum of the relative K-theory of the second one.

Theorem 2.1.3. There is a natural homotopy equivalence Exactles

KΩ
**

ΩKq∆

44�� ' Spectra .

The functor in the bottom is the following composition:

Exactles
q∆
// Arr (Wald)

K // Spectra
Ω // Spectra

Proof. Let us construct a homotopy equivalence KΩN '→ ΩK[qCN ∆→ qBN ].
We apply Waldhausen’s localization theorem (1.7.10) to the categories of weak equivalences

i ⊂ q in CN and in BN , thus yielding two homotopy fibration sequences:

KCqN // KCN // KqCN

KBqN // KBN // KqBN

There are maps K∆ from the first row to the second row making the ladder diagram commute,
since it obviously commutes at the categorical level, i.e. before taking K-theory spectra. We
complete them to the homotopy fibration sequences of relative K-theory, and we take the induced
maps:

KCqN //

K∆

��

KCN

K∆

��

// KqCN

K∆
��

KBqN //

��

KBN

��

// KqBN

��

KΩN // K[CN ∆→ BN ] // K[qCN ∆→ qBN ]

(2.4)

Lemma 2.1.1 says that the K∆ in the middle is a homotopy equivalence. Thus the cofiber of
this K∆ is contractible. Therefore the map K[CN ∆→ BN ] → K[qCN ∆→ qBN ] is homotopic
to a constant map. Thus its homotopy fiber is ΩK[qCN ∆→ qBN ].

Since the last line of (2.4) is a homotopy fibration sequence, we get the desired homotopy
equivalence KΩN → ΩK[qCN ∆→ qBN ].

We now check naturality. Let F : M → N be an arrow in Exactles. Naturality follows
from naturality of inclusions, of the three ∆ maps, of relative K-theory and of homotopy fibers.
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We have the following diagram, which is commutative except for the square involving the dashed
arrows, which is homotopy commutative and thus the proof is finished (this is in agreement with
definition 1.7.2):

KCqM

xx

//

��

KCM //

yy

��

KqCM

yy

��

KCqN //

��

KCN //

��

KqCN

��

KBqM

xx

//

��

KBM

yy

//

��

KqBM

yy

��

KBqN //

��

KBN //

��

KqBN

��

KΩM //

KΩF

xx

'
��

K∆M '∗ //

yy

Kq∆M

yy

KΩN //

'

��

K∆N '∗
// Kq∆N

ΩKq∆M

GG

ΩKq∆F

xx

ΩKq∆N

EE

Corollary 2.1.4. There is a natural homotopy equivalence Exactles

KΩ
**

Ω2Kq⊥
44�� ' Spectra .

Proof. We have the following commutative diagram, where the two vertical and horizontal se-
quences are homotopy fibrations:

KqCN K∆ ////

id

��

KqBN //

K⊥
��

K[qCN ∆→ qBN ]

KqCN
id

// KqCN

��

K[qBN ⊥→ qCN ]

Taking homotopy fibers and their induced maps, we obtain the following commutative dia-
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gram, where the displayed homotopy equivalence is theorem 2.1.3:

* //

��

ΩK[qBN ⊥→ qCN ]

��

KΩN '→ ΩK[qCN ⊥→ qBN ] //

��

KqCN K∆ //

id

��

KqBN

K⊥
��

* // KqCN
id

// KqCN

Since iterated homotopy fibers are homotopy equivalent (theorem [11, (8.57)]), we get the
result by comparing the homotopy fiber of the vertical bottom left map with the one of the
horizontal top right map.

Naturality is proven in a similar way as in theorem 2.1.3. It follows from naturality of ho-
motopy fibers, naturality of the homotopy equivalence in said theorem, and naturality of the
homotopy equivalence between iterated homotopy fibers.

Theorem 2.1.5. There is a natural homotopy equivalence Exactles

KbB
**

KqC

44��' Kb⊥ Spectra .

Proof. We already observed naturality in remark 1.6.6.3. Let us now check that the map K⊥ :

KbBN → KqCN is a homotopy equivalence.
Let F : qCN → bBN be the exact functor defined as (N, d) 7→ (N, 0, d) on objects and

obviously on arrows. We will check that KF is a homotopy inverse to K⊥: since ⊥ ◦ F = id,
we need only check that KF ◦K⊥ ' id. To prove this, we will check that both KF ◦K⊥ and
id are homotopic to KG where G : bBN → bBN is defined through a binary mapping cylinder
construction:

(N, d, d′) � G // T((N, d)
0→ (N, d), (N, d′)

id→ (N, d′))

By virtue of proposition 1.7.9, it suffices to see that there are weak equivalences from F ◦ ⊥ to
G and from id to G.

These weak equivalences are induced by the front and back inclusions. Let us check this. First
observe that ⊥G(N, d, d′) = T(id(N,d′)).

The front inclusion λ : (N, d′) → ⊥G(N, d, d′) induces a map λ̃ : (N, d, d′) → G(N, d, d′)

defined in the same way. As id(N,d′) is a quasi-isomorphism, then λ is one too (remark 1.2.6), and
thus λ̃ is in b.

On the other hand, the back inclusion ρ : (N, d′)→ ⊥G(N, d, d′) induces ρ̃ : (F◦⊥)(N, d, d′)→
G(N, d, d′) defined in the same way. But ρ is a quasi-isomorphism by the cylinder axiom, and thus
ρ̃ is in b.

In summary, we have the following weak equivalences in bBN :

(N, d, d′)
λ̃
'
// G(N, d, d′) (F ◦ ⊥)(N, d, d′)

ρ̃

'
oo

30



2.2 The main result: V 0ΩK
'

KΩ

These arrows are the components of natural transformations (this is part of the definition of
cylinder functors) which are then weak equivalences:

idbBN
' +3 G F ◦ ⊥'ks

Proposition 1.7.9 applies, finishing the proof.

Corollary 2.1.6. There is a natural zigzag homotopy equivalence Exactles

KΩ
**

ΩKqBb

44

�O
�O ' Spectra .

Proof. Consider the following diagram:

KqBbN //

'
��

KqBN Ki //

id

��

KbBN

' K⊥
��

ΩK[qBN ⊥→ qCN ] // KqBN K⊥ // KqCN // K[qBN ⊥→ qCN ]

where i : qBN → bBN is the inclusion and the right vertical map is a homotopy equivalence
thanks to theorem 2.1.5. The bottom sequence is a homotopy fibration sequence, and the top one is
one too thanks to Waldhausen’s localization theorem 1.7.10. The right square being commutative,
there is an induced dotted map making the left square commute up to homotopy. This map is a
homotopy equivalence since id and K⊥ are.

Thus there is a homotopy equivalence KqBbN '→ ΩK[qBN ⊥→ qCN ]. It defines a natural
homotopy equivalence. Indeed, naturality follows from naturality of the induced dotted map, of
⊥ and of inclusions. Applying the loop functor and corollary 2.1.4 yields:

KΩN ' // Ω2K[qBN ⊥→ qCN ] ΩKqBbN'oo

Since both of these homotopy equivalences are natural, we are done.

2.2 The main result: V 0ΩK ' KΩ

2.2.1 Whitehead and Postnikov towers

Definition 2.2.1. Let X be a spectrum and t ∈ Z.
We denote by VtX the stage t of the Postnikov tower ofX . It is a spectrum satisfying πi(VtX) =

0 if i > t and there is a map iX : X → VtX that induces an isomorphism on homotopy groups up
to level t.

We denote by V tX the stage t of the Whitehead tower of X . It is a spectrum satisfying
πi(V

tX) = 0 if i < t and there is a map pX : V tX → X that induces an isomorphism on
homotopy groups from level t onwards.

Both of these constructions are natural: we have functors and natural transformations

Spectra

id
++

Vt

33�� i Spectra Spectra

V t
++

id
33�� p Spectra
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The functors Vt and V t respect homotopies.
The spectrum V tX is called the t-connected covering of X , and V 0X is called the connective

part of X .

Remark 2.2.2. Let us recall how these constructions are obtained, at least for pointed CW-complexes.
If t ∈ N, VtX is obtained by attaching cells of dimension ≥ t + 2 to X . See [13, (8.6.6)] for

more details.
The space V tX is obtained as the homotopy fiber of the inclusion X → Vt+1X . This follows

from the long exact homotopy sequence associated to the fibration sequence ΩVt+1X → V tX →
X .

Proposition 2.2.3. For any t ∈ Z there are natural homotopy equivalences

Spectra

Vt−1Ω
++

ΩVt

33�� ' Spectra Spectra

V tΩ
++

ΩV t+1

33�� ' Spectra

Proof. We will do the proof for pointed CW-complexes.
Since Vt−1ΩX is obtained from ΩX by attaching cells of dimension ≥ t + 1 and since

πk(ΩVtX) = 0 if k ≥ t, the inclusion iΩX : ΩX → Vt−1ΩX induces a natural bijection of
sets of pointed homotopy classes of maps (this is the content of [13, (8.6.5)]):

i∗ΩX : [Vt−1ΩX,ΩVtX]→ [ΩX,ΩVtX] (2.5)

Now, ΩiX lives on the right hand side of (2.5). Denote by sX : Vt−1ΩX → ΩVtX the
corresponding map on the left hand side. It is the desired homotopy equivalence. Indeed, iΩX
induces isomorphisms on homotopy groups up to dimension t − 1 and ΩiX does too. Seeing as
both source and target of sX have trivial homotopy groups from t onwards, this proves that sX is
a weak equivalence and thus a homotopy equivalence by Whitehead’s theorem.

As for naturality, it follows from naturality of the bijection (2.5) and of i that s is also a natural
transformation.

We have the following commutative diagram where the vertical and horizontal sequences are
homotopy fibrations:

ΩV t+1X

��

V tΩX // ΩX
iΩX //

ΩiX
��

Vt−1ΩX

sX
xx

ΩVtX

Passing to homotopy fibers yields a map that is also a homotopy equivalence:

V tΩX //

'
��

ΩX

id

��

iΩX // Vt−1ΩX

sX
��

ΩV t+1X // ΩX
ΩiX

// ΩV tX
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Naturality follows from naturality of i, s, and of homotopy fibers.

We aim to prove that there is a natural zigzag homotopy equivalence KΩ
'

V 0ΩK . The
previous proposition suggests that we might as well start by investigating V 1K first, which is what
we will do.

2.2.2 Description of V 1K

In this section we will freely use the explicit description of the K0 group of a Waldhausen category
(proposition 1.7.4).

Definition 2.2.4. We define the Euler characteristic of a graded object N of N :

χ(N) :=
∑
i

(−1)i[Ni] ∈ K0N

The Euler characteristic of a chain complex is by definition the Euler characteristic of its underlying
graded object.

Proposition 2.2.5 (Additivity of χ). If 0 // N ′ // N // N ′′ // 0 is an exact sequence
of graded objects, then χ(N) = χ(N ′) + χ(N ′′). In particular, χ(N ′ ⊕N ′′) = χ(N ′) + χ(N ′′) for
any N ′, N ′′ graded objects.

Proof. For every i ∈ Z we have a short exact sequence in N :

0 // N ′i
// Ni

// N ′′i
// 0

Thus [Ni] = [N ′i ] + [N ′′i ] in K0N . Hence summing over all i while alternating signs proves the
assertion.

Proposition 2.2.6. If (N, d) is an acyclic chain complex inN , then χ(N) = 0.

Proof. Suppose N is supported on the interval [n,m]. We have the following diagram with short
exact sequences in the shape of the symbol “∧”:

0 // Nn

""

dn // Nn−1

##

dn−1
// Nn−2

// · · ·

0

<<

Zn−1

;;

$$

Zn−2

;;

$$
0

==

0

<<

0

::

0

By proposition 2.2.5, we have [Ni] = [Zi] + [Zi−1] for all i ∈ Z. Combining this with the fact that
Zi = 0 for i ≥ n, Zm = Nm and Zi = 0 for i < m gives the result.

Lemma 2.2.7. If N is a graded object, then χ(N [i]) = (−1)iχ(N) for every i ∈ Z.

Proof. We prove it by induction. The result is obvious for i ∈ {1, 0,−1}, and the general case
follows since N [i] = N [i− 1][1] if i > 1 and similarly if i < 1.
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Proposition 2.2.8. If there is a quasi-isomorphism of chain complexes N →M , then χ(N) = χ(M).

Proof. Let f : N →M be a quasi-isomorphism in CN , that is, cone(f) is acyclic. Recall the short
exact sequence in CN from remark 1.5.2.1:

0 //M // cone(f) // N [−1] // 0

By propositions 2.2.5, 2.2.6 and lemma 2.2.7, we have

0 = χ(cone(f)) = χ(M) + χ(N [−1]) = χ(M)− χ(N)

Proposition 2.2.9. The Euler characteristic defines a natural transformation Exactles

K0qC
''

K0

77�� χ Ab

such that χN is an abelian group epimorphism for everyN ∈ Exactles. 1

Proof. Propositions 2.2.5 and 2.2.8 give a well defined abelian group homomorphism χN : K0qCN →
K0N . It is surjective, since it has a right inverse induced by the inclusion N ↪→ qCN defined by
concentrating an object in degree zero.

We check naturality: if F :M→N is an arrow in Exactles and [M ] ∈ K0qCM, then

χN ([CF (M)]) =
∑
i

(−1)i[FMi] = K0F

(∑
i

(−1)i[Mi]

)
= K0F (χM ([M ]))

We will apply Thomason’s cofinality theorem 1.7.11 to χN . The Waldhausen category with
a cylinder functor we will consider in this application is qCN , and q(CN )χ is by definition the
full Waldhausen subcategory of qCN whose objects are the chain complexes with zero Euler
characteristic, with the quasi-isomorphisms as weak equivalences; we will denote it by qCxN .

Observe that qCx defines a functor qCx : Exactles → Wald. Indeed, this is true since by
naturality of χ (proposition 2.2.9), if F :M→N is an exact functor, then qCF : qCM→ qCN
maps qCxM into qCxN .

Corollary 2.2.10. There is a natural homotopy equivalence Exactles

KqCx
**

V 1K

44�� ' Spectra .

Proof. As we stated above, we apply Thomason’s cofinality theorem 1.7.11 to the abelian group
epimorphism χN : K0qCN → K0N . We can naturally model “K0N ” as V0KN making diagram
(2.6) commute. This diagram shows two homotopy fibration sequences: the one on top is the one
coming from Thomason’s theorem, and the one on the bottom is the one defining V 1KN . The
middle map is given by Gillet-Waldhausen’s theorem 1.7.12.

KqCxN //

'
��

KqCN //

'
��

V0KN

id
��

V 1KN // KN // V0KN

(2.6)

1It can be proven that χ is in fact a natural isomorphism ( [16, II.9.2.2]), but we won’t be needing it.
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There is therefore an induced homotopy equivalence KqCxN → V 1KN . It is natural. Indeed,
the only map we don’t know to be natural is the map KqCN → V0KN . But this is the case, as
can be seen from the proof of Thomason’s theorem. To prove it one gets a homotopy fibration
sequence coming from Waldhausen’s localization theorem 1.7.10: here the second map is natural, as
it is induced by an inclusion. In this homotopy fibration sequence, there is a homotopy equivalence
from the last spectrum to “G”, and this equivalence is also seen to be natural. We refer the reader
to the proofs of theorems [16, (IV.8.10)] and [16, (V.2.3)].

2.2.3 Proof of the main result

In a footnote to proposition 2.2.9 we remarked that χ : K0qCN → K0N was an isomor-
phism. Of course, if we consider the function χ : Ob(CN ) → K0N , it has a non-trivial ker-
nel, in the sense that there are non-zero chain complexes with vanishing Euler characteristic, e.g.

0 // N0
0 // N0

// 0 if N0 is not a zero object. We now seek to characterize such chain
complexes. In fact, we can consider the function χ : Ob(GrN ) → K0N , and it is its kernel (i.e.
the preimage of {0}) that we will describe.

Definition 2.2.11. Let N be a graded object of N . We say that N is

• potentially acyclic if there exists a differential d on N such that the chain complex (N, d) is
acyclic,

• stably potentially acyclic if there exists a potentially acyclic graded object N ′ of N such that
N ⊕N ′ is potentially acyclic.

Of course, potentially acyclic objects are stably potentially acyclic.

Remark 2.2.12. (Stably) potentially acyclic graded objects have zero Euler characteristic, by virtue
of proposition 2.2.6 and of additivity of χ.

Lemma 2.2.13. A graded object N ofN satisfies χ(N) = 0 if and only if it is stably potentially acyclic.

Proof. We will now reproduce and use a particular case of “Grayson’s trick” ( [2, (9)]).
We have a forgetful functor CqN → GrN which associates to an acyclic chain complex its

underlying graded object. We can consider equivalence in GrN modulo the image of this functor:
explicitely, if N,N ′ ∈ GrN then we write N ∼ N ′ if there exist M,M ′ potentially acyclic graded
objects such that N ⊕M ∼= N ′ ⊕M ′.

This is obviously an equivalence relation. We can consider its quotient set, which we will
denote by G, and we will denote the equivalence class of N ∈ GrN by 〈N〉.

Claim: G is an abelian group with the binary operation defined as 〈N〉+ 〈N ′〉 := 〈N ⊕N ′〉.
The class 〈0〉 is the identity element, and 〈N〉 = 〈0〉 if and only if N is stably potentially acyclic.
The opposite of 〈N〉 is 〈N [−1]〉.

Proof : The only non-trivial assertion is the description of the opposite of 〈N〉. It suffices
to observe that N ⊕ N [−1] is potentially acyclic: define d : Nn ⊕ Nn−1 → Nn−1 ⊕ Nn−2 as
d(n,m) = (m, 0); it endows N ⊕N [−1] with an acyclic differential. Thus

〈N〉+ 〈N [−1]〉 = 〈N ⊕N [−1]〉 = 〈0〉 �
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We have a well defined Euler characteristic homomorphism χ : G → K0N . To see this, let
N ∼ N ′, i.e. there exist M,M ′ potentially acyclic such that N ⊕M ∼= N ′ ⊕M ′. Since χ is
additive, invariant under (quasi)-isomorphism and zero on acyclic chain complexes (propositions
2.2.5, 2.2.8 and observation 2.2.12), we have

χ(N) = χ(N) + χ(M) = χ(N ⊕M) = χ(N ′ ⊕M ′) = χ(N ′) + χ(M ′) = χ(N ′)

Now we must prove that χ is an isomorphism, for if that’s the case, then χ(〈N〉) = χ(N) = 0

if and only if 〈N〉 = 〈0〉, if and only if N is stably potentially acyclic, proving the lemma.
We define a group homomorphism j : K0N → G. If N ∈ N , write N• for the graded object

of N that is concentrated by N in degree 0. Now define j([N ]) = 〈N•〉. We must check that this
is well defined. It is immediate by definition that N ∼= N ′ implies 〈N〉 = 〈N ′〉.

Now we make the observation that if N is a graded object of N , then 〈N [i]〉 = (−1)i〈N〉 for
all i ∈ Z. We have already checked it for i = −1. That proof is immediately adapted to see that it is

true for i = 1. The general case follows by induction. So if 0 // N ′
i // N

p
// N ′′ // 0

is a short exact sequence in N , then

〈N ′•〉+ 〈N ′′• 〉 − 〈N•〉 = 〈N ′•〉+ 〈N ′′• [2]〉+ 〈N•[1]〉 = 〈N ′• ⊕N ′′• [2]⊕N•[1]〉 = 〈0〉

the last equality being true because the graded object N ′• ⊕N ′′• [2]⊕N•[1] can be endowed with i
and p as an acyclic differential, hence it is potentially acyclic.

We need only check that j and χ are mutually inverse.

χj([N ]) = χ(〈N•〉) = χ(N•) = [N ]

jχ(〈N〉) = j

(∑
i

(−1)i[Ni]

)
=
∑
i

(−1)i〈Ni〉 =
∑
i

〈Ni[i]〉 =

〈⊕
i

Ni[i]

〉
= 〈N〉

thus finishing the proof.

If (N, d, d′) ∈ BbN , then (N, d) ∈ CxN . Indeed, as (N, d′) is acyclic, χ(N) = 0.
Thus we have an exact functor > : tBbN → qCxN , which defines a natural transformation

Exactles

tBb

))

qCx

55�� > Exactles . When we take K-theory, we obtain the following

Theorem 2.2.14. There is a natural homotopy equivalence Exactles

KtBb

**

KqCx

44��K> ' Spectra .

Proof. To prove the theorem we will apply Waldhausen’s approximation theorem 1.7.13 to the
functor > : tBbN → qCxN . The conclusion of the approximation theorem gives exactly what
we want.

We have already observed that tBN satisfies the saturation and cylinder axiom, and qCxN
satisfies the saturation axiom since qCN does. Thus the hypotheses of the approximation theorem
are satisfied.
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2.2 The main result: V 0ΩK
'

KΩ

We have to check that > : tBbN → qCxN satisfies two conditions. The fact that it reflects
quasi-isomorphisms is merely the definition of t.

Let N ∈ BbN , P ∈ CxN and r : >N → P . We have to see that there exist M ∈ BbN ,
s : N →M and a quasi-isomorphism u : >M → P such that the following diagram commutes:

>M

u'

��

>N

>s

??

r
// P

(2.7)

Since χ(P ) = 0, by lemma 2.2.13 there exists a potentially acyclic Y ∈ GrN such that grP ⊕ Y
has an acyclic differential z. Let y be an acyclic differential on Y . Let i1 : P → P ⊕ (Y, y) be the
inclusion and define r′ = i1 ◦ r:

>N
r′

%%

r

��

P
i1
// P ⊕ (Y, y)

Let Q = (grP ⊕ Y, dP ⊕ y, z) and consider

r′ : >N → >Q = P ⊕ (Y, y) 0 : ⊥N → ⊥Q = (grP ⊕ Y, z)

DefineM as the binary mapping cylinderM := T(r′, 0). Define s : N →M as the front inclusion.
Let π be the projection >M = T(r′)→ P ⊕ (Y, y). Let p1 : P ⊕ (Y, y)→ P be the projection,

and define u := p1 ◦ π. We have the following commutative diagram:

>N >s //

r′
%%

>M = T(r′)

π

��

u

%%
P ⊕ (Y, y) p1

// P

We now check that M, s and u satisfy what we need:

• M ∈ BbN . The back inclusion ρ : (grP ⊕Y, z)→ T( ⊥N 0 // (grP ⊕ Y, z) ) = ⊥M is a
quasi-isomorphism (proposition 1.5.7) and (grP ⊕ Y, z) is acyclic, hence ⊥M is acyclic, i.e.
M ∈ BbN (remark 1.2.8).

• u = p1 ◦π is a quasi-isomorphism. Since (Y, y) is acyclic then p1 is the identity in homology
groups, hence it is a quasi-isomorphism. The morphism π is also a quasi-isomorphism, being
the projection of a cylinder in the category qCN that satisfies the cylinder axiom. Thus
their composition u is a quasi-isomorphism.

• The commutativity of (2.7) is read in the commutativity of the following diagram:

>N
r

��

>s //

r′
%%

>M = T(r′)

π

��

u

%%
P

i1
//

idP

99P ⊕ (Y, y) p1

// P
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2.2 The main result: V 0ΩK
'

KΩ

Corollary 2.2.15. There is a natural zigzag homotopy equivalence Exactles

V 0ΩK
))

KΩ

55

�O
�O ' Spectra .

Proof. We have the following zigzag of natural homotopy (zigzag) equivalences:

V 0ΩK
'

2.2.3
+3 ΩV 1K ΩKqCx

'
2.2.10
ks ΩKtBb

1.6.5.3
'

2.2.14
ks ΩKqBb '

2.1.6
KΩ

If we apply π0 to the zigzag homotopy equivalence V 0ΩKN ∼ KΩN we get K1N ∼= K0ΩN .
So to get a group presentation of K1N it is enough to get one for K0ΩN . Instead of doing so now,
we will first iterate the loop construction and we will obtain a similar isomorphism from which
we will extract a group presentation for KnN for any n.
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Chapter 3

Iteration of the construction

Let N be an exact category that supports long exact sequences.

3.1 Iterated homotopy cofibers and multi-relative K-theory

For the sake of clarity, we will first discuss the concepts of this section in dimension 2.

Definition 3.1.1. Consider the following commutative square in the category of spectra:

X1
//

��

X2

��

X ′1
// X ′2

(3.1)

We take horizontal homotopy cofibers and their induced map:

X1
//

��

X2

��

// C

��

X ′1
// X ′2

// C ′

We define the iterated homotopy cofiber of the diagram (3.1) as the homotopy cofiber of the dashed
map.

If we are given a morphism of commutative squares of spectra, there is an induced morphism
on their iterated homotopy cofibers making the obvious square commute, in such a way that
iterated homotopy cofibers define a functor Arr 2(Spectra)→ Spectra.

This definition is reasonable by virtue of the following

Remark 3.1.2. We might just as well have taken the homotopy cofibers “vertically” and then taken
the homotopy cofiber of the resulting horizontal map. The result is the same up to homotopy
equivalence. This is theorem [11, (8.57)] on homotopy equivalence of iterated homotopy cofibers,
a result we have already cited. Moreover, this homotopy equivalence is natural, in the sense that
if there is a morphism between commutative squares and we take homotopy cofibers vertically
and horizontally in both squares, then the two homotopy equivalences make the obvious square
commute.
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3.2 Definition of Ωn

Observe that any functor F : C → D defines an obvious functor F : Arr i(C)→ Arr i(D) for
any i ≥ 0.

Definition 3.1.3. We define the multi-relative K-theory functor K : Arr 2(Wald)→ Spectra as
the composition

Arr 2(Wald)
K // Arr 2(Spectra) // Spectra

where the second arrow is the iterated homotopy cofiber functor of definition 3.1.1.
More explicitely, given a commutative square in Wald:

C //

��

D

��

C′ // D′

its multi-relative K-theory spectrum is the iterated homotopy cofiber of the induced commutative
square in K-theory spectra.

The previous definitions and remark can be extended inductively to n-dimensional commuta-
tive cubes, giving a multi-relative K-theory functor K : Arr n(Wald)→ Spectra for any n ≥ 0.
For example, for a three-dimensional commutative cube of spectra, we take homotopy cofibers in
one out of the three possible directions. This results in a commutative square of cofibers. We now
take the iterated homotopy cofiber as in the previous definition. It can also be proven that it does
not depend on the choice of original direction.

Remark 3.1.4. There are multi-relative K-functors K : Arr n(Exact)→ Spectra for any n ≥ 0,
defined by the inclusion Exact ↪→ Wald that considers an exact category as a Waldhausen
category with the isomorphisms as quasi-isomorphisms (example 1.2.4)

3.2 Definition of Ωn

We defined Ω as the functor ∆q : Exactles → Arr (Exactles). We now define Ωn for any n ≥ 2.
For the sake of clarity let us first define it for n = 2.

Recall that we have functors Cq, Bq : Exactles → Exactles (remarks 1.5.10.1, 1.6.6.1). In
particular, we have ΩCqN = ∆ : CqCqN → BqCqN and ΩBqN = ∆ : CqBqN → BqBqN .

Taking this into consideration, we make the following

Definition 3.2.1. We define Ω2N to be the following commutative square in Exactles, i.e., the
following object of Arr 2(Exactles), depicted as an arrow in Arr (Exactles) on the right:

CqCqN ∆ //

Cq∆
��

BqCqN
Bq∆ =
��

ΩCqN

��

CqBqN
∆
// BqBqN ΩBqN

(3.2)

We have a functor Ω2 : Exactles → Arr 2(Exactles), defined obviously on arrows, and thus
a functor KΩ2 : Exactles → Spectra.
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3.2 Definition of Ωn

More explicitely, we have the following commutative diagram where both horizontal lines are
homotopy fibration sequences:

KCqCqN K∆ //

KCq∆
��

KBqCqN
KBq∆
��

// KΩCqN

��

KCqBqN
K∆
// KBqBqN // KΩBqN

The homotopy cofiber of the right vertical map is by definition KΩ2N . We thus have a
homotopy fibration sequence:

KΩCqN // KΩBqN // KΩ2N (3.3)

Remark 3.2.2. Let us describe more explicitely the terms of the homotopy fibration sequence (3.2).
For example, take CqBqN . Its objects are pairs (N, d) where N is a graded object of BqN and d
is an acyclic differential on N .

Explicitely, such an object is a Z2-graded object of N , denoted by (N j
i )i,j∈Z, endowed with

acyclic differentials dji : N j
i → N j

i−1, δji , δ
j′

i : N j
i → N j−1

i making the following square commute
for every i, j ∈ Z:

N j
i

dji //

δji
��

δj
′

i
��

N j
i−1

δji−1
��

δj
′

i−1
��

N j−1
i

dj−1
i

// N j−1
i−1

The description of the objects of CqCqN , BqCqN , BqBqN is analogous.

The definition and description of Ωn : Exactles → Arr n(Exactles) for higher n is analogous:
ΩnN is a certain commutative n-dimensional cube of categories that support long exact sequences.
Its multi-relative K-theory spectrum KΩnN is its iterated homotopy cofiber, and it fits into a
homotopy fibration sequence as follows:

KΩn−1CqN // KΩn−1BqN // KΩnN (3.4)

We introduce some terminology:

Definition 3.2.3. Define the exact category (Bq)nN for n ≥ 1 inductively. Its objects are called
acyclic binary multicomplexes of dimension n in N .

Explicitely, an acyclic binary multicomplex of dimension n is a Zn-graded object of N with
two parallel acyclic differentials in each of the n possible directions, making every square commute.

A short sequence of acyclic binary multicomplexes of dimension n is exact if and only if it is
short exact exact in every direction.

Observe that (Bq)nN is the exact category sitting on the terminal vertex of the cube defining
ΩnN , just as it is the case for (Bq)2N : see diagram (3.2).
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3.3 Group presentation for KnN

3.3 Group presentation for KnN

Lemma 3.3.1. Let X f→ Y
g→ Z be a homotopy fibration sequence of connective spectra. Suppose that

f admits a splitting: there exists a map r : Y → X such that rf = idX . Then if i ≥ 0, the induced
sequence

V 0ΩiX
V 0Ωif

// V 0ΩiY
V 0Ωig

// V 0ΩiZ (3.5)

is also a homotopy fibration sequence.

Proof. The functor Ω is an isomorphism in the homotopy category of spectra, hence it preserves
homotopy fibration sequences. The functor V 0 respects homotopies, therefore we have a nullho-
motopy of the composition in (3.5). Let F be the homotopy fiber of V 0Ωig. We wish to see that
the induced map k : V 0ΩiX → F is a weak equivalence. Since the spectra at hand are connective,
we need only check that k induces an isomorphism on homotopy from level 0 onwards. Let j ≥ 0.

The existence of a splitting implies that f is injective in homotopy. This forces the connecting
homomorphisms of the long exact homotopy sequence of X f→ Y

g→ Z to be trivial. Thus this
long exact sequence is reduced to the following short exact ones for every m ≥ 0:

0 // πmX
f∗
// πmY

g∗
// πmZ // 0 (3.6)

The natural map V 0ΩiX → ΩiX induces an isomorphism on homotopy from level 0 onwards.
We also have a natural isomorphism πj(Ω

iX)→ πj+i(X). Of course, this also holds for Y and Z.
We therefore have a commutative diagram as follows:

πj(V
0ΩiX)

(V 0Ωif)∗
//

∼=
��

πj(V
0ΩiY )

(V 0Ωig)∗
//

∼=
��

// πj(V
0ΩiZ)

∼=
��

0 // πj+iX
f∗

// πj+iY
g∗

// πj+iZ // 0

(3.7)

The sequence on the bottom is exact as shown in (3.6). The sequence on the top is therefore a
short exact sequence, being isomorphic to the bottom one.

We just proved that (V 0Ωig)∗ is surjective for j ≥ 0, therefore the long exact homotopy
sequence for the homotopy fibration F → V 0ΩiY → V 0ΩiZ also decomposes as short exact
sequences. We have then the following commutative diagram displaying two short exact sequences:

0 // πj(V
0ΩiX)

(V 0Ωif)∗
//

k∗
��

πj(V
0ΩiY )

(V 0Ωig)∗
// // πj(V

0ΩiZ) // 0

0 // πjF

55

Therefore k∗ is an isomorphism for every j ≥ 0, proving the theorem.

Lemma 3.3.2. There is a natural homotopy equivalence Spectra

V 0ΩiV 0

))

V 0Ωi

55�� ' Spectra for any i ≥ 0.
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3.3 Group presentation for KnN

Proof. Consider the natural transformation p : V 0 ⇒ idSpectra from the definition of the White-
head tower. We compose it with the functor V 0Ωi to get a natural transformation V 0ΩiV 0 ⇒
V 0Ωi. It is a homotopy equivalence for every spectrum X .

Indeed, since the map pX : V 0X → X induces an isomorphism on homotopy from level 0
onwards, the shifted map ΩipX : ΩiV 0X → ΩiX induces an isomorphism from level −i onwards.
Therefore the map V 0ΩipX : V 0ΩiV 0X → V 0ΩiX induces an isomorphism from level 0 onwards.
Since the V 0 functor yields connective spectra, Whitehead’s theorem applies to show that V 0ΩipX
is a homotopy equivalence.

Theorem 3.3.3. There is a natural zigzag homotopy equivalence Exactles

KΩn

))

V 0ΩnK

55

�O
�O ' Spectra for

any n ≥ 1.

Proof. We will prove the result by induction. For n = 1 this is corollary 2.2.15.
Now suppose we have the result for n− 1. The naturality assumption applied to the arrow ∆ :

CqN → BqN in Exactles gives a homotopy commutative square (i.e., homotopy commutative
at every stage of the zigzag):

KΩn−1CqN KΩn−1∆ //

'

KΩn−1BqN
'

V 0Ωn−1KCqN
V 0Ωn−1K∆

// V 0Ωn−1KBqN

Both horizontal maps fit into homotopy fibration sequences, as shown in the following homo-
topy commutative diagram:

KΩn−1CqN KΩn−1∆ //

'

KΩn−1BqN
'

// KΩnN
'

V 0Ωn−1KCqN
V 0Ωn−1K∆

// V 0Ωn−1KBqN // V 0Ωn−1KΩN

The top one is the homotopy fibration sequence (3.4) characterizing multi-relative K-theory. The
lower one is obtained by applying V 0Ωn−1 to the top one, as per lemma 3.3.1. The zigzag on the
right is obtained by taking the induced map on cofibers at every stage of the zigzag. It is therefore
composed of homotopy equivalences. It is natural, too, since ∆ and homotopy cofibers are.

We have the following sequence of natural (zigzag) homotopy equivalences, yielding the result:

KΩn '
V 0Ωn−1KΩ

'
2.2.15

V 0Ωn−1V 0ΩK
'

3.3.2
+3 V 0ΩnK

Corollary 3.3.4. There is a natural isomorphism Exactles

π0KΩn

''

Kn

77�� ∼= Ab for any n ≥ 1.
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3.3 Group presentation for KnN

Proof. Let n ≥ 1. We have natural isomorphisms π0V
0Ωn ' +3 π0Ωn ' +3 πn of functors

Spectra→ Ab. Precomposing them withK we get a natural isomorphism Exactles

π0V 0ΩnK
''

Kn

77�� ∼= Ab ,

recalling that by definition Kn = πnK.

We also have a natural isomorphism Exactles

π0KΩn

''

π0V 0ΩnK

77�� ∼= Ab coming from theorem 3.3.3 and

remark 1.7.3.
Composing these two yields the desired natural isomorphism.

Our final step is to give a presentation for the functor π0KΩn.

Lemma 3.3.5. Consider the following commutative diagram of abelian groups with rows and column
exact:

A
p
//

g

��

B //

h
��

0

C
f
// D

k
// E //

q

��

0

F

��

0

Then the map qk : D → F descends to an isomorphism D/H → F , where H is the subgroup of D
generated by the images of f and g.

This isomorphism is natural, in the sense that if we have another such diagram and a morphism of
diagrams between them then the two isomorphisms make the induced square commute.

Proof. Let us prove that the kernel of qk is H . First observe that, by exactness, qkf = 0 and
qkg = qhp = 0. Thus H is included in the kernel of qk. To prove the reverse inclusion, we
consider d ∈ D such that qk(d) = 0. Then k(d) = h(b) for some b ∈ B. Also b = p(a) for some
a ∈ A. Thus k(d) = hp(a) = kg(a). Hence there exists a c ∈ C such that d − g(a) = f(c), and
thus d = g(a) + f(c) ∈ H , proving the statement.

Since qk is an epimorphism, this proves that the map qk : D → F passes to the quotient as an
isomorphism ϕ : D/H → F .

Let us now check naturality, which is the commutativity of the bottom square in the following

44



3.3 Group presentation for KnN

diagram:
A′ //

g′

��

��

B′

��

��

A //

g

��

B

��

C ′
f ′

//

��

D′
k′ //

π′

��

d

��

E′ //

q′

��

e
��

0

C
f

// D
k //

π

��

E //

q

��

0

D′/H ′
ϕ′

//

d̃

��

F ′

��

r
��

D/H ϕ
// F

��

0

0

First, observe that the map d descends to a map d̃, since dg′(A′) ⊂ g(A) and df ′(C ′) ⊂ f(C)

by commutativity. Since π′ is a quotient map, it is surjective and thus it suffices to see that
ϕd̃π′ = rϕ′π′. We check this:

ϕd̃π′ = ϕπd = qkd = qek′ = rq′k′ = rϕ′π′

Corollary 3.3.6. Consider the following commutative square of connective spectra:

X1
//

��

X2

g

��

X3
f
// X4

Take its iterated homotopy cofiber, denoted by X̄ :

X1
//

��

X2

g

��

// A

��

X3
f
// X4

k
// B

q

��

X̄
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3.3 Group presentation for KnN

Take long exact homotopy sequences:

π0X1
//

��

π0X2

g∗
��

// π0A

��

// 0

π0X3
f∗
// π0X4

k∗
// π0B

q∗
��

// 0

π0X̄

��

0

Then the map q∗k∗ : π0X4 → π0X̄ descends to an isomorphism π0X4/H where H is the subgroup of
π0X4 generated by the images of f∗ and g∗.

This isomorphism is natural, in the sense that if we have a commutative cube of connective spectra

X ′1
//

~~

��

X ′2

~~

g′

��

X1
//

��

X2

g

��

X ′3
f ′

//

~~

X ′4

d~~

X3
f

// X4

then the induced map d̃∗ : (π0X4)/H → (π0X
′
4)/H ′ and the induced map on the π0 of iterated

homotopy cofibers π0X̄
′ → π0X̄ make the following square commute:

(π0X
′
4)/H ′

d̃∗
��

∼= // π0X̄
′

��

(π0X4)/H ∼=
// π0X̄

Corollary 3.3.7. The abelian group KnN admits the following presentation. It has one generator per
acyclic binary multicomplex of dimension n inN , and these are subject to the following relations:

1. [N ] = [N ′] + [N ′′] if there is a short exact sequence 0→ N ′ → N → N ′′ → 0 in (Bq)nN ,

2. any acyclic binary multicomplex of dimension n that has some pair of parallel differentials equal
is made to vanish.

Moreover, if F :M→N is an arrow in Exactles, then with the above presentation the abelian
group homomorphism KnF : KnM→ KnN acts as KnF ([M ]) = [(Bq)nF (M)] for any M acyclic
binary multicomplex of dimension n inM.
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3.3 Group presentation for KnN

Proof. For the sake of clarity we will prove it in the case where n = 2. The general case is proven
analogously after suitable generalizations of lemma 3.3.5 and corollary 3.3.6.

Recall that the multi-relative K-theory spectrum KΩ2N is the iterated homotopy cofiber of
the following commutative square:

KCqCqN K∆ //

KCq∆

��

KBqCqN
KBq∆
��

KCqBqN
K∆
// K(Bq)2N

(3.8)

Let F :M→N be an arrow in Exactles. Combining corollary 3.3.6 with corollary 3.3.4 and
the fact that π0K ∼= K0, we get the following commutative diagram, where the notation A/〈f, g〉
means the quotient group of A by the subgroup generated by the images of f and g:

K0(Bq)2M

K0(Bq)2F

��

π′ // K0(Bq)2M
〈K0Bq∆,K0∆〉

˜K0(Bq)2F
��

∼= // π0K(Bq)2M
〈(KBq∆)∗,(K∆)∗〉

(K(Bq)2F )∗
��

∼= // π0KΩ2M

(KΩ2F )∗

��

∼= // K2M

K2F

��

K0(Bq)2N π
// K0(Bq)2N
〈K0Bq∆,K0∆〉 ∼=

// π0K(Bq)2N
〈(KBq∆)∗,(K∆)∗〉 ∼=

// π0KΩ2N ∼=
// K2N

In it we read off an isomorphism K0(Bq)2N
〈K0Bq∆,K0∆〉 → K2N . Now recall proposition 1.7.4: it gives

an explicit presentation for the K0 groups and an explicit description of the K0 homomorphisms.
This yields the desired presentation of K2N , since indeed the images of K0B

q∆ and K0∆ give the
acyclic binary multicomplexes of dimension 2 that have some pair of parallel differentials equal.

From the same proposition and the above commutative ladder we also get the desired descrip-
tion of K2F .

Corollary 3.3.7 remains valid if N does not support long exact sequences. We refer the reader
to section 6 of [4] for details. Grayson remarks that in this generality, quasi-isomorphisms in CN
might not be closed under composition, but still CqN , the full subcategory of CN consisting of
acyclic complexes, is an exact category if N is. He then goes on to generalize corollary 2.2.15
to arbitrary exact categories. The main ingredient is the cofinality theorem combined with the
fact that there is a natural way to embed an exact category as a full subcategory, closed under
extensions, of an exact category that supports long exact sequences.

We point out two follow-ups to the work we exposed in this dissertation.
Grayson [5] generalized the presentation for the higher K-groups of an exact category in

corollary 3.3.7 to the relative K-groups of an exact functor between exact categories. From this he
derived the long exact sequence of K-theory groups, without using homotopy theory.

Harris [6] gave proofs of the additivity, resolution and cofinality theorems in K-theory by
adopting Grayson’s presentation as a definition, without using any homotopy theory either.
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