Introduction to stable homotopy theory Exercise sheet no 2

Reminder: Top denotes the category of compactly-generated weakly Hausdorff spaces.

1. i. Let $X, Y \in \text{Top.}$ Assuming there is a bijection $\text{Hom}_{\text{Top}}(X \times Y, Z) \cong \text{Hom}_{\text{Top}}(X, C(Y, Z))$ natural in X, Y, Z, prove there is a natural homeomorphism

$$C(X \times Y, Z) \cong C(X, C(Y, Z)).$$

ii. Prove that the homeomorphism above restricts to a homeomorphism of based spaces

$$F(X \wedge Y, Z) \cong F(X, F(Y, Z)).$$

- 2. Prove that $(-)_+$: Top \to Top $_*$ satisfies $(X \times Y)_+ \cong X_+ \wedge Y_+$. Note that $(*)_+ \cong S^0$. This, plus some compatibility axioms, says that $(-)_+$: Top $_*$ Top $_*$ is a *symmetric monoidal functor*. Is $U: \text{Top}_* \to \text{Top}$ a symmetric monoidal functor?
- 3. Prove that the connected components of an H-group X are all homotopy equivalent. In particular, $\pi_1(X, x)$ does not depend on the choice of x.
- 4. i. (Eckmann–Hilton argument) Let G be a set and (G, *, e), (G, \circ, u) be two monoid structures on it, such that $\circ : G \times G \to G$ is a morphism of semigroups for the operation *, i.e. the following *exchange law* is satisfied:

$$(g \star g') \circ (h \star h') = (g \circ h) \star (g' \circ h')$$

for all g, g', h, $h' \in G$. Prove that e = u and then that $* = \circ$. Prove also that the operation is commutative.

- ii. Deduce that if A is a co-H-group and Z is an H-group, then [A, Z] is an abelian group.
- 5. i. Let (X, x_0) be a pointed space. Define $\Omega'(X) = \{f : [0, s] \to X, f(0) = f(s) = x_0\}$, it is the *Moore loop space* of X. It is a topological space when we endow it with the initial topology with respect to the obvious map $\Omega'X \to \Omega X \times [0, \infty)$. Prove that $\Omega'X$ is a *group-like topological monoid*, that is, a topological monoid with up-to-homotopy inverses.
 - ii. Prove that the natural map $\Omega X \to \Omega' X$ is a map of H-groups, and it is a homotopy equivalence.
- 6. If $f, g: X \to Y$ are homotopic, prove that their homotopy cofibers are homotopy equivalent.
- 7. Let \mathcal{U} denote the category of *all* topological spaces. Let $X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \longrightarrow \cdots$ be a sequential diagram in \mathcal{U} , and let X be its colimit. Let $K \in \mathcal{U}$.
 - i. Describe the natural map

$$\psi : \operatorname{colim}_{i}\operatorname{Hom}_{\mathcal{U}}(K, X_{i}) \to \operatorname{Hom}_{\mathcal{U}}(K, X)$$

and prove it is injective if the f_i are inclusions. Note that it is surjective if and only if every map $K \to X$ factors through one of the X_i .

ii. Say that $g: A \to B$ in \mathcal{U} is a closed T_1 inclusion if:

¹In particular, the category of monoid objects in the category of monoids is isomorphic to the category of commutative monoids.

- It is a closed inclusion, i.e. $g(A) \subseteq B$ is closed and $g: A \to g(A)$ is a homeomorphism.
- For every $x \in B \setminus g(A)$, the set $\{x\} \subseteq B$ is closed.²

Prove that if the f_i are closed T_1 inclusions and K is compact, then ψ is a bijection. In other words, $\operatorname{Hom}_{\mathcal{U}}(K,-)$ preserves sequential colimits of closed T_1 inclusions when K is compact. More is true: prove that $\operatorname{colim}_i C(K,X_i) \to C(K,X)$ is a homeomorphism.

iii. In the above hypotheses, deduce that if the X_i , the f_i and K are pointed, then $\operatorname{colim}_i[K, X_i] \to [K, X]$ is a bijection. In particular, the natural map

$$\operatorname{colim}_i \pi_k(X_i) \to \pi_k(X)$$

is a bijection for all $k \ge 0$ (so, a group isomorphism for $k \ge 1$).

- iv. Every Hurewicz cofibration between (weak) Hausdorff spaces is a closed T_1 inclusion. Therefore, in Top_* , homotopy groups commute with sequential colimits of (unbased) Hurewicz cofibrations.
- v. Let us now work in Top. Instead of taking the ordinary colimit $\operatorname{colim}_i X_i$, which requires some point-set hypotheses for it to commute with homotopy groups, we can take its *mapping telescope*. Define it to be X_{∞} , the sequential colimit of the following mapping cylinders (you should make a drawing):

$$Mf_0 \xrightarrow{i_0} M(f_1 \circ r_0) \xrightarrow{i_1} M(f_2 \circ r_1) \longrightarrow \dots \longrightarrow X_{\infty}$$

$$\downarrow^{r_0} \qquad \downarrow^{r_1} \qquad \downarrow^{r_2} \qquad \downarrow$$

$$X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} X_2 \xrightarrow{f_2} X_3 \longrightarrow \dots \longrightarrow X$$

You could prove that:

- If you have a map of sequential diagrams in Top, i.e. a ladder diagram, in which all the vertical maps are weak equivalences, then the induced map on mapping telescopes is a weak equivalence. This justifies calling X_{∞} the (sequential) *homotopy colimit* of the diagram.
- The canonical map $X_{\infty} \to X$ is a weak equivalence when the f_i are cofibrations.
- Homotopy groups commute with sequential homotopy colimits, as do ordinary homology groups.
- If *X* is a CW-complex, then *X* is the homotopy colimit of its skeleta.

²This is automatic if *B* is T_1 .