Introduction to stable homotopy theory Exercise sheet no 4

- 0. Give an example proving that excision doesn't work for relative homotopy. That is: find an example of a CW-complex X decomposed as a union of two subcomplexes $X = A \cup B$ such that $\pi_n(X, B)$ is not isomorphic to $\pi_n(A, A \cap B)$.
- 1. Let $f: X \to Y$ be a morphism in CW_* . Prove that if $f_*: \widetilde{H}_*(X; \mathbb{Z}) \to \widetilde{H}_*(Y; \mathbb{Z})$ is an isomorphism, then $f_*: h_*(X) \to h_*(Y)$ is an isomorphism for any reduced homology theory h_* .
- 2. Let h_* be a reduced homology theory on CW_* .
 - i. Prove that $h_*(*) = 0$.
 - ii. Prove that for any subcomplex $A \subseteq X$ there is an associated long exact sequence.
 - iii. Prove that there is a Mayer–Vietoris long exact sequence associated to a decomposition into subcomplexes $X = A \cup B$. (Hint: use the double mapping cylinder to obtain a decomposition of a homotopy equivalent space into homotopy equivalent open subsets.)
 - iv. (*) Let $X_0 \to X_1 \to X_2 \to \dots$ be a sequence of sub-CW-complex inclusions. Prove that the natural map

$$\operatorname{colim}_i h_n(X_i) \to h_n(\operatorname{colim}_i X_i)$$

is an isomorphism. The analogous statement for cohomology is false in general: limits of abelian groups behave less well than colimits. While the functor colim : Fun(\mathbb{N} , Ab) \rightarrow Ab is exact¹, the functor lim : Fun(\mathbb{N}^{op} , Ab) is only left exact, and its right derived functor is called lim¹. The *Milnor* lim¹ *sequence* is a natural short exact sequence

$$0 \longrightarrow \lim^{1} h^{q-1}(X_{i}) \longrightarrow h^{q}(X) \longrightarrow \lim h^{q}(X_{i}) \longrightarrow 0.$$

See [Hat02, 3F.8] or [Sel97, 13.1.3].

- v. Let h'_* be another reduced homology theory and let $T:h_*\Rightarrow h'_*$ be a morphism of homology theories. That means that it is a natural transformation that commutes with suspension. Suppose that $T(S^0):h_*(S^0)\to h'_*(S^0)$ is an isomorphism. Deduce that T is a natural isomorphism. The analogous statement for cohomology is also true and can be proven similarly.
- 3. Prove that if E is an Ω -spectrum, then $E^n(-) := [-, E_n]$ defines a cohomology theory. Here we use the convention that $E_{-n} = \Omega^n E_0$ for n > 0.
- 4. Using the Brown representability theorem for functors $h^n: \operatorname{Ho}(CW_*^{\geq 1})^{\operatorname{op}} \to \operatorname{Ab}$, prove that if h^* is a homology theory, then there exists an Ω -spectrum E such that $h^* \cong E^*$ as cohomology theories $\operatorname{Ho}(CW_*)^{\operatorname{op}} \to \operatorname{GrAb}_{\mathbb{Z}}$ (note that the connectedness hypothesis is gone).
- 5. Define the category CW^2 of CW-pairs to have as objects pairs (X,A) where X is a CW-complex and A is a subcomplex. Morphisms are continuous maps $X \to Y$ such that $f(A) \subseteq B$. If $A = \emptyset$ we omit it from the notation. Define a (generalized, unreduced) homology theory to be a sequence of functors $H_n: CW^2 \to Ab$, $n \in \mathbb{Z}$, together with natural transformations $H_n(X,A) \to H_{n-1}(A)$, satisfying the following axioms:

 $^{^{1}\}mbox{Because}$ sequential colimits of abelian groups commute with finite limits.

²You may want to use the result that F(X,Y) is homotopy equivalent to a CW-complex (and not merely weakly homotopy equivalent) if X,Y are CW-complexes and X is finite [Mil59]; this applies in particular to loop spaces.

- Homotopy: if $f,g:(X,A)\to (Y,B)$ are homotopic (via a homotopy of pairs $(X\times I,A\times I)\to (Y,B)$), then $H_n(f)=H_n(g)$.
- Exactness: any CW-pair (X, A) yields a long exact sequence of abelian groups

$$\cdots \longrightarrow H_{n+1}(X,A) \longrightarrow H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A) \longrightarrow \cdots$$

• Excision: If *X* is the union of subcomplexes *A* and *B*, then the inclusion $(A, A \cap B) \rightarrow (X, B)$ induces an isomorphism

$$H_*(A, A \cap B) \rightarrow H_*(X, B).$$

- Additivity: If $\{(X_i, A_i)\}_i$ are CW-pairs, the canonical map $\bigoplus_i H_*(X_i, A_i) \to H_*(\bigsqcup X_i, \bigsqcup A_i)$ is an isomorphism.³
- i. For an unreduced homology theory H_* , prove:
 - a) If (Y, X) is a CW-pair with inclusion $i : X \to Y$, then

$$H_*(Y,X) \xrightarrow{\cong} H_*(Ci,*) \cong H_*(Y/X,*).$$

- b) $H_*(X) \cong H_*(X,*) \oplus H_*(*)$ naturally in X.
- c) Prove that H_* determines a reduced homology theory on CW_* by $\widetilde{H}_*(X) = H_*(X,*)$.
- ii. Prove that a reduced homology theory \widetilde{H}_* on CW_* determines an unreduced homology theory H_* on CW^2 by $H_*(X) = \widetilde{H}_*(X_+)$, and $H_*(X,A) = \widetilde{H}_*(X/A)$ for $A \neq \emptyset$.
- iii. Conclude that the categories of reduced and unreduced homology theories are equivalent.

REFERENCES

- [Hat02] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
- [Mil59] John Milnor. On spaces having the homotopy type of a CW-complex. *Trans. Amer. Math. Soc.*, 90:272–280, 1959.
- [Sel97] Paul Selick. *Introduction to homotopy theory*, volume 9 of *Fields Institute Monographs*. American Mathematical Society, Providence, RI, 1997.

 $^{^{3}}$ We can make a similar definition in the category of all pairs of spaces. We'd then add a weak equivalence axiom, saying that weak equivalences of pairs get mapped to isomorphisms, in the exactness axiom we'd take a cofiber sequence, and in the excision axiom we'd decompose X as the union of the interiors of two subspaces; additivity is analogous.