- 1. Let \mathcal{C} be a cocomplete category with a set of maps \mathcal{J} .
 - i. Prove that the coproduct of cell complexes is a cell complex.
 - ii. Let $X \to Y$ and $Y \to Z$ be relative cell complexes. Prove that the composition is a relative cell complex.
 - iii. Let $X_0 \to X_1 \to \cdots$ be a sequential diagram in \mathbb{C} where all the arrows are relative cell complexes. Prove that the natural map $X_0 \to \operatorname{colim}_n X_n$ is a relative cell complex. In particular, if $X_0 = *$ or X_0 is a cell complex, then $\operatorname{colim}_n X_n$ is a cell complex.
 - iv. Prove that a pushout of a relative cell complex along any map is a relative cell complex.
- 2. Let $\pi_*^s := \pi_*^s(S^0)$ be the \mathbb{N} -graded abelian group of stable homotopy groups of spheres.
 - i. Prove that the twist $S^1 \wedge S^1 \rightarrow S^1 \wedge S^1$ has degree -1. Deduce that the twist $S^n \wedge S^m \rightarrow S^m \wedge S^n$ has degree $(-1)^{nm}$.
 - ii. Let $\alpha \in \pi_n^s$, $\beta \in \pi_m^s$. Choose representatives $[f : S^{n+k} \to S^k] \in \pi_n^s$ and $[g : S^{m+k} \to S^k] \in \pi_m^s$. Prove that the operation $* : \pi_n^s \times \pi_m^s \to \pi_{n+m}^s$ given by

$$\alpha * \beta = [f \circ \Sigma^n g : S^{m+n+k} \to S^k] \in \pi^s_{n+m}$$

is well-defined and associative.

iii. Prove that if *k* is even, then

$$[f \circ \Sigma^n g : S^{m+n+k} \to S^k] = [f \land g : S^{n+m+2k} \to S^{2k}]$$

as elements of π_{n+m}^s . What happens if *k* is odd?

iv. Prove that * is graded-commutative. That is,

$$[f] * [g] = (-1)^{nm}[g] * [f]$$

for $[f] \in \pi_n^s, [g] \in \pi_m^s$.

- v. Finally, prove that * is distributive with respect to +, and so π_*^s is a graded-commutative graded ring. As a commentary: Each element of π_n^s , $n \ge 1$ is nilpotent, i.e. some power of it is zero.¹ This is a theorem of Nishida (1973), see [Rav92].
- 3. i. (*) Prove that if *A* is a cell spectrum and $f : B \to B'$ is a weak equivalence of Ω -spectra, then $f_* : [A, B] \to [A, B']$ is a bijection. Dually, prove that if $f : A \to A'$ is a weak equivalence of cell spectra and *B* is an Ω -spectrum, then $f^* : [A', B] \to [A, B]$ is a bijection.²
 - ii. Prove that $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Sp})}(X, Y) \cong [QX, RY]$.
 - iii. If X is a cell spectrum, prove that $Hom_{Ho(Sp)}(X, Y) \cong [X, RY]$.
 - iv. If *Y* is an Ω -spectrum, prove that $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Sp})}(X,Y) \cong [QX,Y]$.
 - v. If *X* is a cell spectrum and *Y* is an Ω -spectrum, prove that $\operatorname{Hom}_{\operatorname{Ho}(\operatorname{Sp})}(X,Y) \cong [X,Y]$.
- 4. Let *h*Sp be the category whose objects are the cell Ω-spectra and whose maps X → Y are given by [X, Y]. Prove that *h*Sp and Ho(Sp) are equivalent but not isomorphic. This *h*Sp together with δ : Sp → Ho(Sp), X → QRX, δ(f) = [QRf] satisfies the weaker universal property of localization explained in Side remark 4.2 in the course.

REFERENCES

- [Hov99] Mark Hovey. *Model categories*, volume 63 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, 1999.
- [MP12] J. P. May and K. Ponto. *More concise algebraic topology*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2012. Localization, completion, and model categories.
- [Rav92] Douglas C. Ravenel. *Nilpotence and periodicity in stable homotopy theory,* volume 128 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith.

¹So good luck trying to describe π_*^s in terms of generators and relations!

²See [Hov99, 1.2.5.(iv)] or [MP12, 14.3.14, 14.4.8] for abstract proofs.