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Let R be a ring.
Classical aim: describe its algebraic K -theory spectrum K (R).

First approximation: trace map tr : K (R)→ HHZ(R).

Brave new algebra: replace Z with the sphere spectrum S, and
HHZ(R) by THHS(R) = THH(R). Get a topological trace map

K (R)
tr //

tr
$$

HHZ(R)

THH(R)

99

which exists for any ring spectrum R .
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R : ring spectrum.

THH(R) is a spectrum. One possible definition: geometric
realization of the simplicial cyclic bar construction of R :

[n] 7→ R∧(n+1),

di (a0 ∧ · · · ∧ an) = a0 ∧ · · · ∧ aiai+1 ∧ · · · ∧ an i 6= n,

dn(a0 ∧ · · · ∧ an) = ana0 ∧ a1 ∧ · · · ∧ an−1.

This gives a simplicial spectrum Bcy
• (R) whose geometric realization

is a spectrum THH(R).



Introduction Graded multiplications on iterated bar constructions Higher and iterated THH of KU Questions raised

R : ring spectrum.

THH(R) is a spectrum. One possible definition: geometric
realization of the simplicial cyclic bar construction of R :

[n] 7→ R∧(n+1),

di (a0 ∧ · · · ∧ an) = a0 ∧ · · · ∧ aiai+1 ∧ · · · ∧ an i 6= n,

dn(a0 ∧ · · · ∧ an) = ana0 ∧ a1 ∧ · · · ∧ an−1.

This gives a simplicial spectrum Bcy
• (R) whose geometric realization

is a spectrum THH(R).



Introduction Graded multiplications on iterated bar constructions Higher and iterated THH of KU Questions raised

R : ring spectrum.

THH(R) is a spectrum. One possible definition: geometric
realization of the simplicial cyclic bar construction of R :

[n] 7→ R∧(n+1),

di (a0 ∧ · · · ∧ an) = a0 ∧ · · · ∧ aiai+1 ∧ · · · ∧ an i 6= n,

dn(a0 ∧ · · · ∧ an) = ana0 ∧ a1 ∧ · · · ∧ an−1.

This gives a simplicial spectrum Bcy
• (R) whose geometric realization

is a spectrum THH(R).



Introduction Graded multiplications on iterated bar constructions Higher and iterated THH of KU Questions raised

R : ring spectrum.

THH(R) is a spectrum. One possible definition: geometric
realization of the simplicial cyclic bar construction of R :

[n] 7→ R∧(n+1),

di (a0 ∧ · · · ∧ an) = a0 ∧ · · · ∧ aiai+1 ∧ · · · ∧ an i 6= n,

dn(a0 ∧ · · · ∧ an) = ana0 ∧ a1 ∧ · · · ∧ an−1.

This gives a simplicial spectrum Bcy
• (R) whose geometric realization

is a spectrum THH(R).



Introduction Graded multiplications on iterated bar constructions Higher and iterated THH of KU Questions raised

When R is commutative, THH(R) is a commutative ring spectrum
(a commutative R-algebra).

We can thus iterate THH: get THHn(R). Related to
Ausoni-Rognes’ redshift conjecture on iterated algebraic K -theory.

There is also “higher THH”. Generalizes Pirashvili’s higher order
Hochschild homology and is related to topological André-Quillen
homology.
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Highlighted results:

In Part 1: graded multiplication on {BnA}n∈N. Identification of the
reduced higher THH

THHR,[∗](R[A],R) ∼= R[K (A, ∗)]

for a discrete ring A, where R[−] = R ∧S Σ∞+ (−), together with
their graded multiplications.

In Part 2: complete identification of THH(KU), T n ⊗ KU and
Sn ⊗ KU as commutative KU-algebras.Two descriptions: one as
KU[G ] where G is some product of Eilenberg-Mac Lane spaces, and
one as a free commutative KU-algebra on a rational KU-module.
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Instances of the bar construction BA:

• classifying space of a topological monoid A,

• HHk(A, k) of an augmented k-algebra A,

• THHR(A,R) of an augmented R-algebra A.

When A is commutative, they have a multiplicative structure and
can thus be iterated.

Goal: describe a framework which unifies these constructions. Find
conditions on A such that {BnA}n≥0 gets a graded multiplication,
and identify it.
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V: cocomplete closed symmetric monoidal category.
Simplicial bar construction: B• : CMon(V)aug → sCMon(V)aug.

Want: symmetric monoidal geometric realization | − | : sV → V, to
have an induced BV = |B•| : CMon(V)aug → CMon(V)aug.

Theorem (S.)

Let F : sSet→ V be a symmetric monoidal functor which is a left
adjoint. Let ∆• be the canonical cosimplicial simplicial set. Then

| − |V := −⊗� F∆• : sV → V

is symmetric monoidal.
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Theorem (S.)

Let sSet F→ V G→W be symmetric monoidal functors which are left
adjoints. Then

| − |V = −⊗� F∆• : sV → V

| − |W = −⊗� GF∆• : sW →W

are symmetric monoidal,

and there is a monoidal isomorphism

sV
|G−|W

((

G |−|V
66�� ∼= W.
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We set BV = |B•|V : CMon(V)aug → CMon(V)aug and similarly
for W.

Corollary

Let sSet F→ V G→W be symmetric monoidal functors which are left
adjoints. There is an isomorphism in CMon(W)aug

BWG (A) ∼= GBV(A)

natural in A ∈ CMon(V)aug.

Now BV is an endofunctor, so we can iterate it.
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Suppose sSet F→ V G→W are cartesian functors between cartesian
categories.

Then

B∗V : Ab(V)→ GrAb(V), A 7→ {BnA}n∈N

and similarly for B∗W .

Theorem (S.)

B∗V extends to B∗V : Ring(V)→ GrRing(V), and similarly for W.
There is an isomorphism in GrRing(W)

B∗WG (A) ∼= GB∗V(A)

natural in A ∈ Ring(V).
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Remark
If sSet F→ V G→W are symmetric monoidal functors between
symmetric monoidal categories, there is an induced sequence

sSet F // CoComon(V)
G // CoComon(W)

of cartesian functors between cartesian categories.

Example

R : commutative ring spectrum. Let

R[−] = R ∧S Σ∞+ (−). sSet
|−|
// Top

R[−]
// R-Mod gives rise to

the sequence

sSet
|−|
// Top

R[−]
// R-CoCoalg

of cartesian functors between cartesian categories.
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Consider sSet
|−|
// Top

R[−]
// R-CoCoalg .

B∗Top : Ring(Top)→ GrRing(Top) takes a discrete ring A to

{K (A, n)}n≥0

with the graded multiplication constructed by Ravenel and Wilson
(1980), representing the cup product in cohomology with
A-coefficients.

B∗R-CoCoalg : Ring(R-CoCoalg)→ GrRing(R-CoCoalg) takes T
to the higher reduced THH

{THHR,[n](T ,R)}n≥0, so

THHR,[∗](R[A],R) ∼= R[K (A, ∗)]

in GrRing(R-CoCoalg).
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Corollary

If A is a discrete ring and E is a commutative ring spectrum with a
Künneth isomorphism, then

E∗(THH
[∗](S[A], S)) ∼= E∗(K (A, ∗))

in GrRing(π∗(E )-CoCoalg), i.e. as π∗(E )-Hopf rings (coalgebraic
rings).
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R : commutative ring spectrum. X : space. There exists a
commutative ring spectrum X ⊗ R characterized by

S-CAlg(X ⊗ R,A) ∼= Top(X ,S-CAlg(R,A)).

When X = {1, . . . , n} then X ⊗ R = R∧n.

A choice of basepoint in X gives a commutative R-algebra structure
on X ⊗ R .

Theorem (McClure-Schwänzl-Vogt ’97)

THH(R) ∼= S1 ⊗ R as commutative R-algebras.
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R : commutative ring spectrum. X : space.

T n ⊗ R ∼= THHn(R), Sn ⊗ R is “higher THH”.

Previous calculations of X ⊗ R :

• R = HFp, X = Sn or X = T n. Veen ’13, BLPRZ ’14, partial
calculations.

• R : Thom spectrum, X arbitrary. Schlichtkrull ’11.

KU: complex topological K -theory commutative ring spectrum.

Goal: describe X ⊗ KU as a commutative KU-algebra, for any
based space X . We describe T n ⊗ KU and Sn ⊗ KU.
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Step 1: THH(KU). First description.

Theorem (Snaith ’79)

There is a weak equivalence of commutative ring spectra

KU ' S[CP∞][x−1]

for x ∈ π2S[CP∞].

We first prove:

Theorem (Loday? (HH.) - S.)

Let R be a commutative ring spectrum and x ∈ π∗R . There is a
weak equivalence of commutative R[x−1]-algebras

THH(R[x−1]) ' THH(R)[x−1].
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Proposition (Hesselholt-Madsen ’97?)

If G is a topological abelian group, there is an isomorphism of
commutative S[G ]-algebras

THH(S[G ]) ∼= S[G ] ∧ S[BG ].

Proven using the cyclic bar construction definition for THH and
BcyG ∼= G × BG .

Corollary

There is an equivalence of commutative S[G ][x−1]-algebras
THH(S[G ][x−1]) ' S[G ][x−1] ∧ S[BG ].
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Theorem (S.)

There is a weak equivalence of commutative KU-algebras

THH(KU) ' KU ∧ S[BCP∞] = KU[K (Z, 3)].
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THH(KU), second description:
F : KU-Mod→ KU-CAlg: free commutative algebra functor.

Theorem (S.)

There is a weak equivalence of commutative KU-algebras

F (ΣKUQ)→ THH(KU),

and F (ΣKUQ) ' KU ∨ ΣKUQ (square-zero extension).

Previously: THH(L) ' L ∨ ΣLQ additively (McClure-Staffeldt ’93).

Key lemma

KU ∧ K (Z, 3) ' ΣKUQ.

Proof ingredients: Ravenel-Wilson’s computation of the
K (1)-homology of E-M spaces + K (Z, 3)Q ' S3

Q + Bott periodicity.
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T n ⊗ KU, n ≥ 1:

Iterating THH(KU) ' KU[K (Z, 3)] gives:

Theorem (S.)

T n ⊗ KU ' KU

[
n∏

i=1
K (Z, i + 2)×(ni)

]
as commutative

KU-algebras.

Additionally: T n ⊗ KU ' F

(
n∨

i=1
(S i )∨(ni) ∧ KUQ

)
.
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Sn ⊗ KU, n ≥ 1:

Theorem (S.)

Sn ⊗ KU ' F (ΣnKUQ) as commutative KU-algebras.
More generally, ΣY ⊗ KU ' F (ΣY ∧ KUQ) for Y based
CW -complex.

Additionally: Sn ⊗ KU ' KU[K (Z, n + 2)].

We can deduce:

Theorem (S.)

TAQ(KU) ' KUQ as KU-modules.
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Stable equivalences
R : commutative ring spectrum. X ,Y : spaces.

Question
When does ΣX ' ΣY imply X ⊗ R ' Y ⊗ R?

Examples

• Valid for all ΣX ' ΣY when R = Thom spectrum
(Schlichtkrull ’11).

Let X0 = T n, Y0 =
n∨

i=1
(S i )∨(ni). Then ΣX0 ' ΣY0, and:

• X0 ⊗ KU ' Y0 ⊗ KU.

• X0 ⊗ HFp ' Y0 ⊗ HFp on a certain range (Veen ’13).

Dundas-Tenti ’16: example of R with X0 ⊗ R 6' Y0 ⊗ R .
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KU and Thom spectra

Theorem (Schlichtkrull ’11)

f : A→ BU of E∞-spaces, A grouplike, A its associated spectrum,
X space.

Then

X ⊗ T (f ) ' T (f )[Ω∞(A ∧ X )].

Setting “f : K (Z, 2) ' BU(1)→ BU”, “KU = T (f )”, X = Sn or
T n, the conclusion holds. But KU is not a Thom spectrum (it is
not connective).
Goal: Understand why does KU behave like a Thom spectrum with
respect to X ⊗− (X = T n,Sn). Investigate whether this formula
gives the right result for X ⊗ KU for other X .
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HKR theorem
FR : R-Mod→ R-CAlg: free commutative algebra functor.

Theorem (McCarthy-Minasian ’03)

FR(ΣTAQ(R))
∼→ THH(R) as commutative R-algebras, when R is

a connective smooth commutative ring spectrum.

KU satisfies the conclusion of the theorem, but is not connective.

HKR for non-connective algebras?
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Thank you for your attention.
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