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Let R be a ring.
Classical aim: describe its algebraic K-theory spectrum K(R).
First approximation: trace map tr : K(R) — HHZ(R).

Brave new algebra: replace Z with the sphere spectrum S, and
HHZ(R) by THHS(R) = THH(R). Get a topological trace map

K(R) i HHZ(R)

R

THH(R)

which exists for any ring spectrum R.



R: ring spectrum.
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Introduction

R: ring spectrum.

THH(R) is a spectrum. One possible definition: geometric
realization of the simplicial cyclic bar construction of R:
[n] s R/\(n—i—l)’
di(aoN---Nap)=aoA---Najajiy1 AN---Nap, 1#n,

dn(ag A---Nap)=apnaoNarA---Aap_1.

This gives a simplicial spectrum BY(R) whose geometric realization
is a spectrum THH(R).
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Introduction

When R is commutative, THH(R) is a commutative ring spectrum

(a commutative R-algebra).

We can thus iterate THH: get THH"(R). Related to

Ausoni-Rognes’ redshift conjecture on iterated algebraic K-theory.

There is also “higher THH". Generalizes Pirashvili’s higher order
Hochschild homology and is related to topological André-Quillen
homology.
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Highlighted results:
In Part 1: graded multiplication on {B"A},cn. Identification of the
reduced higher THH

THHR’[*](R[A]7 R) = R[K(A, )]

for a discrete ring A, where R[—] = R As X5°(—), together with

their graded multiplications.

In Part 2: complete identification of THH(KU), T" ® KU and
5" ® KU as commutative KU-algebras. Two descriptions: one as
KU[G] where G is some product of Eilenberg-Mac Lane spaces, and

one as a free commutative KU-algebra on a rational KU-module.
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Graded multiplications on iterated bar constructions

Instances of the bar construction BA:
e classifying space of a topological monoid A,
o HH¥*(A, k) of an augmented k-algebra A,
o THHR(A, R) of an augmented R-algebra A.

When A is commutative, they have a multiplicative structure and
can thus be iterated.

Goal: describe a framework which unifies these constructions. Find
conditions on A such that {B"A},>0 gets a graded multiplication,
and identify it.
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Graded multiplications on iterated bar constructions

V: cocomplete closed symmetric monoidal category.
Simplicial bar construction: B, : CMon(V)*"¢ — sCMon(V)*"&.

Want: symmetric monoidal geometric realization | — | : sV — V), to
have an induced By = |B,| : CMon(V)?"¢ — CMon(V)"e.

Theorem (S.)

Let F : sSet — V be a symmetric monoidal functor which is a left

adjoint. Let A® be the canonical cosimplicial simplicial set. Then
|-y =—® FA®*:sV =V

is symmetric monoidal.
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Let sSet 5V & W be symmetric monoidal functors which are left
adjoints. Then

|_|V:_® FA®:sY =V

|—lw=—-—® GFA*:sW =W

are symmetric monoidal,



Graded multiplications on iterated bar constructions

Theorem (S.)

Let sSet 5V & W be symmetric monoidal functors which are left
adjoints. Then

|—ly=—® FA*:sV >V
|—lw=—-—® GFA*:sW =W
are symmetric monoidal, and there is a monoidal isomorphism
sV o = W.
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Graded multiplications on iterated bar constructions

We set By = |B,|y : CMon(V)?"¢ — CMon())*"¢ and similarly
for W.

Corollary

Let sSet &V & W be symmetric monoidal functors which are left
adjoints. There is an isomorphism in CMon(W)?"¢

Bw G(A) = Gsv(A)

natural in A € CMon(V)*"s.

Now By is an endofunctor, so we can iterate it.
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Graded multiplications on iterated bar constructions

F ., G . .
Suppose sSet — V — W are cartesian functors between cartesian

categories. Then
Bj : Ab(V) — GrAb(V), A {B"A}nen

and similarly for B;),.
Theorem (S.)

By, extends to By, : Ring(V) — GrRing(V), and similarly for W.
There is an isomorphism in GrRing(W)

B}, G(A) = GBj(A)

natural in A € Ring(V).
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Remark

F y\, G . .
If sSet — V = W are symmetric monoidal functors between
symmetric monoidal categories, there is an induced sequence

sSet — CoComon(V) £, CoComon(W)

of cartesian functors between cartesian categories.

Example
R: commutative ring spectrum. Let

RI-1= R As £(-).
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Remark

F \, G . .
If sSet — V = W are symmetric monoidal functors between
symmetric monoidal categories, there is an induced sequence

sSet — CoComon(V) £, CoComon(W)

of cartesian functors between cartesian categories.

Example
R: commutative ring spectrum. Let
R[—] = R As Z(—). sSet -l Top R, R-Mod gives rise to
the sequence
sSet - Top il R-CoCoalg

of cartesian functors between cartesian categories.
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Graded multiplications on iterated bar constructions

Consider sSet = Top alm

R-CoCoalg .

Btop : Ring(Top) — GrRing(Top) takes a discrete ring A to
{K(A n)}n>0

with the graded multiplication constructed by Ravenel and Wilson
(1980), representing the cup product in cohomology with
A-coefficients.

Bk-coCoalg : Ring(R-CoCoalg) — GrRing(R-CoCoalg) takes T
to the higher reduced THH

{THHRI(T R)} >0, so

THHRU(RIA], R) = RIK(A, %)]
in GrRing(R-CoCoalg).



Graded multiplications on iterated bar constructions

Corollary

If A is a discrete ring and E is a commutative ring spectrum with a
Kiinneth isomorphism, then

E.(THHM(S[A],S)) = E.(K(A, %))

in GrRing(7.(E)-CoCoalg), i.e. as m.(E)-Hopf rings (coalgebraic
rings).
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Higher and iterated THH of KU

R: commutative ring spectrum. X: space. There exists a
commutative ring spectrum X ® R characterized by

S-CAlg(X ® R, A) = Top(X,S-CAlg(R, A)).

When X = {1,...,n} then X ® R = R"".

A choice of basepoint in X gives a commutative R-algebra structure
on X ® R.

Theorem (McClure-Schwanzl-Vogt '97)
THH(R) = S! ® R as commutative R-algebras.
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Higher and iterated THH of KU

R: commutative ring spectrum. X: space.
T"® R = THH"(R), S"® R is "higher THH".

Previous calculations of X ® R:

e R=HF, X =5"0or X =T". Veen '13, BLPRZ '14, partial

calculations.

e R: Thom spectrum, X arbitrary. Schlichtkrull "11.

KU: complex topological K-theory commutative ring spectrum.

Goal: describe X ® KU as a commutative KU-algebra, for any
based space X. We describe T" ® KU and S" @ KU.
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Higher and iterated THH of KU

Step 1: THH(KU). First description.
Theorem (Snaith '79)

There is a weak equivalence of commutative ring spectra
KU ~ S[CP>][x 1]

for x € mS[CP>].
We first prove:

Theorem (Loday? (HH.) - S.)

Let R be a commutative ring spectrum and x € w.R. There is a

weak equivalence of commutative R[x']-algebras

THH(R[x"!]) ~ THH(R)[x!].
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If G is a topological abelian group, there is an isomorphism of

commutative S|G|-algebras

THH(S[G]) = S[G] A S[BG].
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Higher and iterated THH of KU

Proposition (Hesselholt-Madsen '977)

If G is a topological abelian group, there is an isomorphism of

commutative S|G|-algebras

THH(S[G]) = S[G] A S[BG].

Proven using the cyclic bar construction definition for THH and
BYG = G x BG.
Corollary

There is an equivalence of commutative S[G][x~!]-algebras
THH(S[G][x71]) ~ S[G][x~1] A S[BG].



Higher and iterated THH of KU

Theorem (S.)

There is a weak equivalence of commutative KU-algebras

THH(KU) ~ KU A S[BCP™] = KU[K(Z, 3)].
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Higher and iterated THH of KU

THH(KU), second description:
F : KU-Mod — KU-CAlg: free commutative algebra functor.

Theorem (S.)
There is a weak equivalence of commutative KU-algebras

F(EKUg) — THH(KU),

and F(XKUp) ~ KUV KUy (square-zero extension).

Previously: THH(L) ~ LV ¥ Lg additively (McClure-Staffeldt '93).

Key lemma

KU A K(Z,3) ~ TKUy.

Proof ingredients: Ravenel-Wilson's computation of the

K (1)-homology of E-M spaces + K(Z,3)g =~ Sé + Bott periodicity.
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Iterating THH(KU) ~ KU[K(Z, 3)] gives:

Theorem (S.)

T KU ~ KU H K(Z,i+2)*()| as commutative
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Higher and iterated THH of KU

T"® KU, n>1:

Iterating THH(KU) ~ KU[K(Z, 3)] gives:

Theorem (S.)

T"® KU ~ KU [lﬂ[ K(Z,i+ 2)X(7)] as commutative
KU-algebras. =

Additionally: T" © KU ~ F (\/ (51 A KUQ).
i=1
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Theorem (S.)
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Higher and iterated THH of KU

S"® KU, n>1:

Theorem (S.)

S"® KU ~ F(X"KUg) as commutative KU-algebras.
More generally, LY @ KU ~ F(LXY A KUg) for Y based
CW -complex.

Additionally: S" @ KU ~ KU[K(Z, n + 2)].
We can deduce:

Theorem (S.)

TAQ(KU) ~ KUg as KU-modules.
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Questions raised

Stable equivalences
R: commutative ring spectrum. X, Y: spaces.

Question
When does X ~ XY imply X@ R~ Y @ R?

Examples

e Valid for all XX ~ XYY when R = Thom spectrum
(Schlichtkrull '11).

Let Xo=T" Yo =V (S)(). Then £Xo ~ £ Yo, and:
i=1
e Xo® KU ~ Yy ® KU.

e Xo® HF, ~ Yy ® HF, on a certain range (Veen '13).

Dundas-Tenti '16: example of R with Xo ® R ¢ Yo ® R.
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Questions raised

KU and Thom spectra
Theorem (Schlichtkrull '11)

f . A— BU of Ey-spaces, A grouplike, A its associated spectrum,
X space. Then

X ® T(f) = T(F[Q®(A A X)].

Setting “f : K(Z,2) ~ BU(1) — BU", "KU = T(f)", X = 5" or
T", the conclusion holds. But KU is not a Thom spectrum (it is
not connective).

Goal: Understand why does KU behave like a Thom spectrum with
respect to X ® — (X = T",5"). Investigate whether this formula
gives the right result for X ® KU for other X.
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Questions raised

HKR theorem

Fr : R-Mod — R-CAlg: free commutative algebra functor.
Theorem (McCarthy-Minasian '03)

FR(ZTAQ(R)) = THH(R) as commutative R-algebras, when R is

a connective smooth commutative ring spectrum.

KU satisfies the conclusion of the theorem, but is not connective.

HKR for non-connective algebras?



Thank you for your attention.
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